The Journal of Supercomputing, 2, 55-79 (1988)
© 1988 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Maze Routing on a Hypercube Multicomputer

YOUNGIJU WON and SARTAJ SAHNI )
Computer Science Department, 136 Lind ﬂall, University of Minnesota, Minneapolis, MN 55455

(Received May 1987; final version accepted March 1988)

Abstract. The implementation of Lee’s maze routing algorithm on an MIMD hypercube multiprocessor
computer can follow several plausible mappings and synchronization strategies. These are evaluated
experimentally on an NCUBE/7 hypercube computer with 64 processors. Different grid partitioning and
mapping strategies result in a different balance between computation and communication time. The total
routing time is significantly impacted by the synchronization and termination detection scheme used.
Further, by rearranging the computation, it is possible to overlap much of the interprocessor communica-
tion with the computation and realize a significant reduction in the overall run time. By choosing the right
partitioning and synchronization scheme and by overlapping computation and communication, a good
speedup is obtained on large routing grids.

1. Introduction

Lee’s maze router is a popular wire routing algorithm. In the single layer case, the
wiring surface is represented by a grid, as shown in Figure 1. Some of the cells are
blocked (shown as shaded cells in Figure 1a) while others are available for routing.
There are two specially designated cells: s, the source cell, and ¢, the target. These cells
are the end points of a wire that is to be routed using only those cells that are not
blocked. The wire begins at s, passes through available cells, and finally reaches 7. A
wire can be routed from one cell to the next by crossing a cell boundary (but not
through a cell corner). One may assume that cells s and ¢ are not blocked. The
objective is to find a shortest route from s to ¢. In this paper, we consider the single
layer case only.

Lee’s algorithm for maze routing is a three-phase algorithm. These phases are front
wave expansion, path recovery, and sweeping. During front wave expansion, a breadth-
first search beginning at s is performed. Cells that are one unit from s are labeled, then
those two units from s are labeled, then those three units from s are labeled, and so
on. This labeling continues until the target cell ¢ is reached. Blocked cells are not
labeled during front wave expansion. Figure 1b shows the effect of the front wave
expansion phase on the initial configuration. We use the four labels —, «, |, and 1
to point to the cell from which we reached the current cell. Thus, all four cells adjacent
to s have a label that points to s.

If the front wave expansion reaches the target cell 7, the path recovery phase begins.
This involves backtracking from ¢ to s by simply following the arrow labels from ¢ to
s (see Figure 1b). Now the wire path has been identified. Before the next wire can be
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Figure 1. Maze routing phases.

routed, this wire path must be blocked and all arrow labels cleared from the grid. This
is done in the sweeping phase, which is similar to the front wave expansion phase.
Figure 1c shows the configuration after sweeping.

The complexity of Lee’s router lies in the front wave expansion and sweeping
phases. Since these are similar, we discuss the former only.

Since grids that represent realistic routing surfaces are quite large and since many
wires have to be routed, Lee’s maze router consumes a large amount of computer time
in practice. Hence, it is desirable to find a suitable parallel implementation. Earlier
attempts at fast realizations of Lee’s router have focused on the development of
special purpose hardware. For example, a cellular mesh connected processor array is
proposed in Blank, Stefik, and van Cleemput [1981]; a processor pipeline is proposed
in Mudge et al. [1982]; an iterative processor array has been developed in Iosupovici
[1986]; a new method to map the grid onto a multiprocessor aray is developed in
Suzuki et al. [1986]; and an architecture consisting of three processor pipelines is
proposed in Won, Sahni, and El-Ziq [1987].
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This paper explores the possibility of using a commercially available multiprocessor
computer for routing. Successful implementation of Lee’s router on our target
computer, an MIMD hypercube computer, requires us to consider the following:
mapping the routing grid onto the hypercube and synchronization.

Section 2 gives a brief overview of the architecture of the NCUBE hypercube
computer and Section 3 provides a high-level description of the multiprocessor Lee’s
router. The next section considers different possibilities for mapping the routing grid
onto a hypercube. Sections 5 and 6 examine the synchronization issue. Finally, we
present experimental results that allow us to compare the various plausible imple-
mentations of Lee’s router.

2. Architecture of the NCUBE Hypercube

A detailed description of the architecture of NCUBE’s hypercube appears in Palmer
et al. [1986]. Here, we review only those features that are relevant to the development
of the remainder of this paper. The hypercube multiprocessor is an MIMD computer
consisting of a host processor with local memory, node processors with their local
memory, and external memory (Figure 2).

Each node has a custom 32-bit, 2-MIP, 0.5-MFLOP processor and a local memory
of either 128K bytes or 512K bytes. The node processors are interconnected using the
binary hypercube topology. Figure 3 shows this for a four-node and an eight-node
hypercube. The NCUBE/AT (hypercube for IBM AT) supports up to 16 processor
nodes, the NCUBE/7 supports up to 128 nodes, and the NCUBE/10 may have up to
1024 nodes. :

The hypercube of node processors operates essentially as a peripheral attached to
the host processor. Currently, the high-level programming language support includes
FORTRAN and C. Both languages have been extended to allow for host-to-node and
node-to-node communication. Neither language has compilers that perform automat-
ic parallelism detection or multiprocessor problem decomposition. The programmer
must provide a program for the host as well as one for each node. Typically, all the
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Figure 2. Hypercube multiprocessor.
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Figure 3. Hypercube topology.

hypercube nodes run the same program, though this is not necessary. In addition, all
required synchronization must be done explicitly by the programmer. This is accom-
plished by message passing. It takes approximately 447 + 2.4 L us to transfer L bytes
between adjacent hypercube processors [Dunigan 1987]. By comparison, two 2-byte
integers can be added in 4.3 pus.

The host program reads the node programs and data from the external memory
(disk), farms these out to the appropriate node processors, communicates with the
node processors while they are computing (if necessary), receives the results from the
node processors upon completion, and writes out to the printer or to the disk. In a

multidisk environment, it is possible for the node processors to directly access the
disks.

3. Hypercube Implementation

A high-level description of a multiprocessor version of the front wave expansion
phase of Lee’s router is given in Figure 4. As can be seen, the basic strategy is to
partition the n x n routing grid into k parts where k is the number of node process-
ors. Each grid partition is assigned (or mapped) to a node processor. Each node
processor performs the front wave expansion for the cells in the grid partition
assigned to it.

To facilitate this front wave expansion, each processor maintains a queue of front
wave cells in its grid partition. During front wave expansion, each cell in the queue
is expanded. This involves examining the cells to its north, south, east and west on the
routing grid. Some of these cells are in the processor’s grid partition while others are
in grid partitions assigned to other processors. For those in the local partition, we may
complete the front wave expansion by labeling the unblocked cells and placing them
in the internal queue (IQ) for later expansion. Cells not in the local partition are stored
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Step 1 : [Grid partitioning and mapping] Partition the nXn routing grid into &

parts and assign one partition to each of the k& node processors.

Step 2 : [Front wave expansion] Each processor that has a grid cell on the current
front wave expands the front wave. This expansion may require communicating
with other processors as the cells adjacent to the front wave cell being expand-
ed may be in different processors. All communication requests are saved.

Step 3 : [Inter processor communication] Each processor sends its communication

packets to the destination processor.

Step 4 : [Process communication packets] Each processor examines the packets if

receives and labels the front wave cells contained in these packets.

Step 5 : Repeat steps 2, 3, and 4 until either the target cell is reached or the new front

wave has no cells in it.

Figure 4. Multiprocessor front wave expansion.

in a send queue (SQ) for later transmission to the proper processor. Because of the
high start-up time associated with a message transfer, it is faster to send a long
message rather than several short ones. Once the front wave cells have been examined
in this way, each node processor transmits the cells in its send queue to the processors
assigned to them. These are received by the destination processors and stored in their
receive queues (RQ). If the cells received are unlabeled and unblocked, they are then
labeled and added to the internal queue (IQ).

It is well known that every 2¢ node hypercube has embedded in it a 214% x 242
two-dimensional mesh [Saad and Schultz 1985]. Figure 5 shows such an embedding
for 4-, 8-, and 16-node hypercubes.

As we will later see, our mapping of the grid partition into the hypercube processors
will require only interprocessor communication corresponding to a mesh. Keeping
this in mind, we view a node processor as in Figure 6. The RQ and SQ are actually
four separate queues each: one for each of the four transmit neighbors. Other
interconnection patterns may be required by some of our synthronization schemes.
The required queue size is a function of the size of the local front waves.

Figure 5. Meshes embedded in a hypercube (showing growth with dimension).
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4. Grid Partitioning and Mapping

As described in the previous section, we utilize only an’'embedded mesh of the
hypercube. Further, we assume that the number of grid cells #? is significantly greater
than the number of node processors k. Since the node processors form a hypercube,
k is a power of 2. k = 2 where d is called the dimension of the hypercube.

In discussing our grid partitioning and mapping strategy, for simplicity we assume
that n is a power of 2, n = 27 for some integer p where p > d/2. Suppose thatn = §

...... 00} 015 OQO.H 001-+.101.-}..100
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(a) n=8, k=4 (b) n=k=8

Figure 7. Grid partitioning.
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and k = 4. The 8 x 8 grid may be partitioned and mapped onto the four processors,
as shown in Figure 7a. Figure 7b shows a possible partitioning and mapping when
n = k = 8. Each partition is labeled with the processor to which it is assigned. As
can be seen, the neighbor partitions of any partition are assigned to node processors
that are adjacent in the hypercube connection. This partitioning strategy may be
formally defined as follows: '

Partitioning Strategy I: Cover the n x n = 2? x 2° grid with rectangles of size
2l 22 Each rectangle in the cover defines a partition of the grid. The
partitions are mapped to processors in such a way that partitions that are adjacent
in the grid are mapped to processors that are adjacent in the hypercube.

A grid cell is said to be on a partition boundary if at least one of its immediate
neighbor cells is in a different partition. It is easy to see that only boundary cells have
a potential to cause interprocessor communication during front wave expansion. To
reduce interprocessor communication one may attempt to reduce B, the number of
boundary cells. For example, in Figure 7a, B = 7 x 4 = 28 whereas in Figure 7b,
B=5x4+ 8 x 4 =52 Some other ways to partition and map an 8 x 8 grid
onto k = 4 processors are shown in Figure 8. The values for B are 16 x 3 = 48
(Figure 8a) and 64 — 4 = 60 (Figure 8b). It is easy to see that partitioning strategy
1 results in a partition with the lowest B value.

Although B is smallest when partitioning strategy 1 is used, this may not yield the
best performance. To see this, consider Figure 7a. Suppose that s is at the top left
corner grid cell and ¢ at the bottom right corner grid cell. Assume there are no
blockages. For the first several cycles, the front wave is confined to processor 00, so
the remaining processors are idle. During the last several cycles, the front wave is
confined to processor 11; once again, the remaining processors are idle. However,
with the partitioning and mapping shown in Figure 8b, the idle time for processors
is reduced. Hence, there is a trade-off between processor utilization and interprocessor
communication which may be studied experimentally. For this, partitioning strategy
1 is generalized as below:
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Figure 8. Other grid partitionings.
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Generalized Partitioning Strategy: Let h and w be the height and width, respectively,
of a covering rectangle. Cover the n x n grid with rectangles of dimension & x w
beginning at the top left corner and proceeding from left to right, top to bottom.

For simplicity, we confine ourselves to the case where both 4 and w are a power of
2and & = w when the hypercube dimension dis even and & = 2w when d is odd. As
before, we assume that 4 < n. Because of these assumptions, the width w of the
covering rectangle completely characterizes it. As the width is increased, the number
of boundary cells decreases, and hence interprocessor communication is expected to
decrease. However, as the width is decreased, processor utilization is expected to
increase. While other partitionings are possible, we do not expect much gain on
random grids from partitionings that are not nearly square. For grids with known
distribution of blockages a multigrid partitioning will work better.

Note that since we require the number of rectangles in the cover to be at least equal
to the number k of processors, w must be in the range

— op-ld2

1<w<i
NG

With these bounds, the number of rectangles in the cover is in the range [k, #°].

5. Synchronization

A front wave expansion cycle consists of one execution of lines 2, 3, and 4 of the
algorithm of Figure 4. When all the processors have completed the first cycle, the front
wave consists of cells that are distance 1 from s; when the second cycle is complete,
the front wave is made up solely of cells distance 2 from s; when cycle g is complete,
the front wave consists solely of cells that are ¢ units from s. One way to ensure that
the multiprocessor algorithm has found a shortest path to ¢ whenever an s to ¢ path
exists is to perform a global synchronization at the end of each cycle. That is, no

Host

Node

1. Enable one cycle of front wave ea-
pansion;

2.If path found then disable node pro-
cessors and proceed to path recovery;

3. If new front wave is empty then ter-

minate;

4. Go to step 1;

Figure 9. Synchronization by host.

.If enable received then perform

steps 2, 3, and 4 of Figure 3.1 ;

.Report result (i.e., target reached, lo-

cal front wave queue is empty) to
host;

. Go to step 1;
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processor begins cycle g until all have completed cycle ¢ — 1. This global syn-
chronization may be performed by the host or by the node processors themselves.

5.1. Synchronization by Host

When the host processor is used to perform global synchronization at the end of each
cycle, the host and node processor programs take the form given in Figure 9.

For each cycle of front wave expansion, k = 2? enable messages are sent from the
host to the node processors and k completion messages are sent form the node
processors to the host. If the shortest path is of length /, then approximately 2k/
messages are transmitted. Since in this case the host transmits and receives messages
serially, this method could produce a bottleneck. Hence, we need to consider ways to
reduce the synchronization overhead.

Step 4 of the front wave expansion phase (Figure 4) performs local synchronization.
A processor cannot begin cycle ¢, ¢ > 1, expansion until it receives the results of the
cycle g — 1 expansion from its north, south, east, and west processors. Consequently,
global synchronization is not required to ensure correctness. However, without some
form of synchronization, it is difficult to terminate the algorithm when there is no s
to ¢ path. When such a path is detected, the node processor that contains the ¢ cell
signals the host. However, when there is no such path, it is necessary for all processors
to notify the host that their front waves are empty. There are two ways to accomplish
this. One is to do a global synchronization, as shown in Figure 9, but less frequently,
as described below.

Let the grid coordinates of s and ¢ be (x,, y,) and (x,, y,), respectively. The
Manbhattan distance M between s and ¢ is |x, — x,| + |y, — y,|. No s to ¢ path is
shorter than M. Hence the first synchronization could be done after M cycles. That:
is, each processor does M cycles of front wave expansion. Upon completion, it signals

Host Node

1. counter =1; 1.If enable received then perform

) steps 2, 3, and 4 of Figure 3.1 ;
2. Enable front wave expansion; .
2.If target reached then report it to

3. If path found then disable node pro- ticst:

cessors and proceed to path recovery;

3. If front wave changes from non emp-
4. If signal(+1/-1) received then & P

ty to empty then send -1 signal to

4.1. counter = counter + signal; host;
4.2. If counter =0 then 4. If front wave changes from empty to
) ) non empty then send +H signal to
wait A time; host;
if no signal then terminate; 5. Go to step 2;

5. Go to step 3:

Figure 10. Counter termination.
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Host Node

1. Enable front wave expan- 1. M thisis node 0 then

sion in processor 0; wait for enable signal from host;
2. If path found then enable 2; repeat
path  recovery else ter- 2.1. If this is node 0 then enable remaining
minate; ' processors else wait for enable signal
from node 0O;
2:2, Perform steps 2, 3, and 4 of Figure 3.1;

If this is node O then receive result from
other nodes else report result to node 0;

2.4. If this is node 0 then
examine results from all nodes;
If path has been found or if all local
front waves are empty then signal

host and terminate else enable all
nodes for next cycle;

3. until false;

Figure 11. Global cycle synchronization by node 0.

the host. The host, upon receiving signals from each of the k processors, then enables
another § cycles, unless a path is already found or all processors have an empty front
wave. Following synchronization after these J cycles, another é cycles may be enabled
and so on. We will call this d-synchronization, with ¢ designated as a user-selected
parameter. However, if 6 or M is too large, then unsuccessful attempts to route from
s to ¢t may take more time than necessary. In a successful route only a small part of
the last & cycles may be useful. If 6 is too small, the synchronization overhead slows
the algorithm. _

Another solution to the termination detection problem is to have each processor
send a + 1 to the host when its local front wave changes form empty to nonempty and
a — 1 when it changes form nonempty to empty. (The local front wave consists of cells
in IQ and unlabeled/unblocked cells in RQ); its size may be determined after step 4 of
Figure 4.) The host begins with a counter of 1 since initially only the processor with
cell s has a nonempty local front wave. When the host receives a +1 or —1 from a
node processor, it adds it to the counter. When the counter is 0, it is possible that
messages in transit between node processors could cause the previously empty front
wave of a processor to become not empty. So, it is necessary for the host to wait A
time units to allow for a node processor to receive its messages and transmit a +1 to
the host. If the counter remains 0 for at least A time, then every node processor has
an empty front wave and there are no messages in transit. At this time we know there
is no s to ¢ path. This termination scheme is called counter termination. The host and
node programs for counter termination are given in Figure 10. A is a characteristic of
the particular multiprocessor computer in use.
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5.2. Synchronization by Node Processors

Global cycle synchronization (Figure 5.1), §-synchronization, and counter termination
can also be implemented using the node processors rather than the host. When global
cycle synchronization and node 0 are used to perform synchronization, the host and
node programs are as given in Figure 11.

When node 0 is to send an enabling signal to the remaining nodes, it may do so
using a tree expansion. That is, node 0 sends the message to node 1; nodes 0 and 1 then
send it to nodes 10 and 11, respectively; nodes 0; 1, 10, and 11 send it to nodes 100,
101, 110, and 111, respectively; and so on. This scheme takes log,k = d message
cycles to transmit the enable signal. Another possibility is for node 0 to transmit the
enable signal directly to each of the remaining processors. This requires k — 1 signal
transfers, most of which will be to nodes not directly connected to node 0. We will
call this the direct transfer method.

Nodes may transmit messages to node O either directly or by using the tree
expansion in reverse. The direct transfer results in a bottleneck at node 0 when all
nodes finish their work at approximately the same time. The reverse tree expansion will
not perform well if the nodes at the tree leaves are the last to finish. The execution of
d-synchronization and counter termination is similar to that of global cycle syn-
chronization (Figure 11).

6. Overlapping Communication and Computation

After sending its data packets (Step 3 of Figure 4), a processor is ready to do more
work. However, the next step causes it to wait since there is a delay between data
leaving a source processor and arriving at its destination. We can rearrange the
algorithm, as shown in Figure 12, by introducing a step between the send data and

Step 1 : [Grid partitioning and mapping] Partition the nXn routing grid into &
parts and assign one partition to each of the k node processors.

Step 2 : [Inter processor communication] Each processor sends its communication
packets to the destination processor (front waves of distance d)

Step 3 : [Front wave expansion] Each processor that has a grid cell on the current
front wave expands the front wave ( of distance d). This expansion may require
communicating with other processors as the cells adjacent to the front wave
cell being expanded may be in different processors. All communication requests
are saved for the next iteration.

Step 4 : [Process communication packets] Each processor examines the packets it
receives and labels and expands (as in step 3) the distance d front wave cells
contained in these packets.

Step 5 : Repeat steps 2, 3, and 4 until either the target cell is reached or the new front

wave has no cells in it.
Figure 12. Modified multiprocessor front wave expansion.
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receive data steps. In the first iteration, each processor sends distance 0 (i.e., null
packets) front wave cells in Step 2, processes distance 0 front wave cells in Step 3, and
receives and processes remaining distance 0 packets in Step 4. In the next iteration,
distance 1 packets are sent in Step 2, the local distance 1 front wave cells are processed
in Step 3, and the remaining distance 1 front wave cells are received from the neighbor
processors and processed in Step 4 and so on.

7. Asynchronous Operation

The local synchronization being done in Step 4 (Figure 4) may be eliminated. This step
may be modified so that when Step 4 is reached by a processor, it consumes all cells
received so far but does not wait for messages that haven’t yet arrived from its
neighbors. Following this, it proceeds to Step 1. As a result of this modification, it is
possible that the first time # is reached it is not reached by a shortest path (see Figure
13). To ensure termination only when a shortest path is reached, it is necessary to label
cells by path length from s rather than by the directions —, «, T, and |. Now,
whenever a cell is reached by a shorter path than it was previously reached by, the cell
joins the front wave. Front wave expansion terminates when there is no front wave
cell with a label less than that at z. A slightly better terminating condition can be
obtained by utilizing the mesh distance from a node processor to the node processor
containing ¢ and the difference in the label at ¢ and the smallest front wave label in
the node processor.

———» Path found first time in asynchronous operation
- ---> The shortest path

Figure 13. Example for asynchronous method.
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Host

Node

—

last path = empty; counter =1;

S

Enable front wave expansion;

x

If new path found then

spath =00
If disable received then terminate;

If new path length received then

th = th length
last path =new path; B4 Few patll 08

4.  Perf teps 2, and 3 of Figure
send new path length to node PISOUR. SRERS: & 2 &

3.1 with front waves of distance <
Processors;

spath
Go to step 3; )
o rosiep 5. If packet received (at step 4 of
4. If signal(+1/-1) received then Figure 3.1) then process front

. waves in communication packet of
4.1. counter = counter + signal; p

distance <spath
4.2. If counter =0 then

6. Report result (i.e., target reached,
wait A time; signal change of status of local

if signal then go to step 3; front wave queue) to host.

5.  shortest path =last path; 7. Gotostep 2;

6. Disable node processors and exit;

Figure 14. Asynchronization method.

When this asynchronous scheme is used, the host and node processors take the
form given in Figure 14. The additional space required by, this scheme for the cell
labels may make it impractical.

8. Experimental Results

Each strategy described above has been programmed in FORTRAN and run on an
NCUBE/7 hypercube multiprocessor. We experimented with randomly generated
grids which were obtained by placing a reasonable number of components (process-
ors, memory, I/O devices, etc.) and introducing blockages to represent existing connec-
tions. The blockages represented 45 to 50% of the grid. The nets that were used were
generated randomly, but were required to have an approximate length of

(row length of grid + column length of grid)/4.

Each computing time reported below represents the average time to route 10 nets.
The first experiment studied the effect of the partition width w using generalized
partitioning. Figure 15 shows the average run time for different values of w using a
four-dimensional (i.e., 16-processor) hypercube, a 256 x 256 grid, and the counter
termination scheme. Figure 16 shows the relative performance of different syn-
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Figure 15. Counter termination with different partition widths (w) for a 256 x 256 grid using a four-dimen-
sional hypercube (h = w).

chronization methods on a 512 x 512 grid using a five-dimensional hypercube. As is
evident, the performance of d-synchronization, the counter termination, and the
asynchronous method is quite sensitive to the choice of w, whereas the performance
of global synchronization is relatively insensitive to w. For each of the methods, there
is an optimal value of w such that using a smaller or larger value increases the run
time. For the case of the 512 x 512 grid reported in Figure 16, these optimal w’s are
4 (6-synchronization), 8 (global synchronization and counter termination), and 32
(asynchronous method). For the asynchronous method, using a w of 4 rather than the
optimal w of 32 results'in a run time that is more than four times the minimum. In
the case of counter termination and é—synchronization a bad choice of w (in the tested
range) could result in run times more than double the minimum. The run time of
global synchronization varied less than 20% as w was changed. Choosing the optimal
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time
40
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1 2 4 8 16 32 64

w —_—

d-synchronization method
----- counter termination
~~~~~~~~~~~ global synchronization method
asynchronous scheme

Note: times are in hundredths of a second

Figure 16. Behavior of each synchronization method with different partition widths (w) for a random
512 x 512 grid using a five-dimensional hypercube (& = 2w).

w is critical to good performance. The best value of w to use for different size grids
is plotted in Figure 17. This best value is a nondecreasing function of the grid size.

The run times shown in Figure 18 were obtained using the best w values for each
method and grid size. For d—synchronization, node 0 is used as the synchronizing node
since this is always quicker than using the host for this purpose. Also, the tree
expansion method is used here because this was generally faster than direct transfer.
However, for counter termination and the asynchronous method, the host processor is
used along with direct transfer. After experimenting with several § values, it was
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stze of grid ——

_ 0-synchronization method
————— counter termination

~~~~~~~~~~~ global synchronization method
—_— asynchronous scheme

Figure 17. Optimal w value for each method.

determined that a ¢ in the range [0.2M, 0.3M] (M is the Manhattan distance between
the wire end points) gave the best performance.

In all the experiments shown in figure 18, we used the nonoverlapping version of
our algorithms. Larger grids could not be run on smaller hypercubes for lack of
sufficient memory. The global synchronization method shows virtually no speedup
with increase in hypercube dimension. In fact, for smaller grids, the run time actually
increases with an increase in the hypercube dimension. This is due to the immense
synchronization overhead associated with this method. By controlling this overhead,
in d-synchronization, we are able to obtain a significant reduction in the run time
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. hypercube dimension
data size
0 1 2 3 4 5 6

64 X 64 6.0 6.5 7.0 7.8 8.5 9.5 10.6
128 X 128 9.6 9.5 93 | 104 11.1 11.3 12.7
256 X 256 - - 35.4 30.7 30.5 32.0 36.1
512 X 512 - - = - 1109 | 102.5 | 100.2
1024 X 1024 - |- - - - - 276.3

Table 1 Global synchronization method

. hypercube dimension
data stze
0 1 2 3 4 5 6
64 X 64 1.5 2.2 23 2.2 2.3 2.3 2.4
128 X 128 7.3 72 6.8 6.5 6.2 6.0 6.8
256 X 256 - = 26.3 18.4 15.6 10.9 11.2
512 X 512 - - - - 65.2 40.5 30.1
1024 X 1024 « - - - - - 84.0
Table 2 6 synchronization scheme
. hypercube dimension
data size
0 1 2 3 4 5 6
64 X 64 1.6 2.1 2.2 2.2 2.3 2.6 3.7
128 X 128 7.3 7.0 6.5 6.0 6.4 6.7 7.5
256 X 256 - - 23.1 16.9 14.3 12.8 13.8
512 X 512 - g % - 60.1 41.2 41.5
1024 X 1024 - - - - - - 89.1
Table 3 Counter termination
. hypercube dimension
data size
0 1 2 3 4 5 6
64 X 64 2.1 23 2.3 24 2.3 2.5 3.8
128 X 128 9.3 9.2 6.3 5.5 6.1 6.9 9.3
256 X 256 - - 22.2 143 10.9 11.2 153
512 X 512 - - - - 56.3 35.8 354
1024 X 1024 - - - - = = 80.1

Table 4 Asynchronous scheme

Note : all times are in hundredths of a second

Figure 18. Run times for different control schemes.

relative to that of global synchronization. Further, on larger grids, say 512 x 512, we
are able to get good speedup. When dimension is 4, the run time is 652 ms. So, with
a dimension 5 hypercube the best we can expect is 326 ms. The observed time is
405 ms. The speedup is 1.6 rather than the theoretical maximum of 2. The theoretical
maximum speedup in going from dimension 4 to dimension 6 is 4. The speedup
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Figure 19a. Run time of global synchronization method.

achieved by é-synchronization is 652/301 = 2.17. This is still quite good when one
considers the wave front is not evenly distributed over the processors. The perfor-
mance of counter termination is comparable to that of 6—synchronization. The asyn-

chronous scheme was the fastest on 1K x 1K grids.

We next tried to ascertain what benefits, if any, would result from using the
overlapping strategy outlined in Section 6. Figure 19 compares, with the exception of
the asynchronous scheme, the run times obtained using overlapping with those tab-
ulated in Figure 18. The asynchronous scheme automatically overlaps computation
and communication since it does not wait for data to arrive. Rather, it consumes the
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Figure 19b. Run time of d-synchronization method.

data as it arrives. For smaller grids, there was no notable difference in performance.
However, for larger grids, overlapping reduced run times significantly. The overlap-
ping strategy reduced the run time of global synchronization by approximately 11%
on a 1K x 1K grid and 10.5% on a 512 x 512 grid. For the d-synchronization
scheme, these reductions were approximately 26% and 18.5%, respectively. In the
case of the counter termination method, the reductions were 22% and 15%, respec-
tively.

Figure 20 plots the run times of all the methods on one graph for two grid sizes
256 x 256 and 512 x 512. The run times for the overlapping strategy are used except
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Figure 19c. Run time of counter termination method.

in the case of the asynchronous scheme where this strategy does not apply. As is
evident, the multiprocessor algorithms are useful only on larger grids (and this is when
we need them). Further, the d-synchronization method outperforms the remaining
methods. This contrasts with the data of Figure 18 where the asynchronous scheme
outperformed the others in the absence of the overlapping strategy.

Figure 21 shows how the communication and computation time changes as the
hypercube dimension is changed. While the processing time drops as the cube dimen-
sion increases, the communication time remains steady (except when going from
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Figure 19d. Run time of asynchronous scheme.

dimension 0 to 1). This indicates that for any routing grid, increasing the hypercube
dimension will reduce the run time only to a certain point. After this, the run time is
limited by the communication overhead, and further reduction in run time cannot be
obtained by increasing the number of processors.

Our experiments support the use of the d—synchronization scheme when the hyper-
cube dimension is large and when the grid size is large. The asynchronous scheme,
even though it exploits the MIMD nature of the machine, is plagued by the overhead
of maintaining the path length for each cell and the cost of termination detection.

9. Conclusions

We have implemented Lee’s maze router on a hypercube multiprocessor computer.
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Figure 20a. Run time of each method with overlapping.

Several different partitioning and control strategies were developed and investigated.
d-synchronization with overlapping gives the best performance on large grids and
hypercubes. Further, one may expect substantial speedups on very large grids, though
not on small ones. In our experiments a speedup of 1.6 was observed using d—syn-
chronization with overlapping on a 512 x 512 grid when the hypercube dimension
was increased from 4 to 5. The speedup when the dimension increased from 4 to 6 was
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Figure 20b. Run time of each method with overlapping.

2.17. This work points out the significance of synchronization overhead and overlap-
ping of computation and communication in MIMD parallel processing.

While our work considered only front wave expansion from the source to target
cell, it is clear that our methods easily extend to the case of simultaneous expansion
from both these cells.
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Figure 21. t, versus t, using 6-synchronization method with a random 512 x 512 grid for path length 266.
(Performances for dimension 0, 1, 2, and 3 are estimated because of the memory limit.)
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