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Abstract. Efficient algorithms to compute the Hough transform on MIMD and SIMD hypercube multicomputers
are developed. Our algorithms can compute p angles of the Hough transform of an N X N image, p < N, in
O(p + log N) time on both MIMD and SIMD hypercubes. These algorithms require O(N?) processors. We also
consider the computation of the Hough transform on MIMD hypercubes with a fixed number of processors. Experi-
mental results on an NCUBE/7 hypercube are presented.
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1. Introduction

The Hough transform is used to transform edges to another space, called the Hough space,
so that the desired group of edges forms a cluster in the transformed space. Let I[0. . .
N —1,0...N — 1] be an N X N image such that I[x, y] =1 iff the image point [x, y]
is a possible edge point. I[x, y] = 0 otherwise. The p angle Hough transform of I to detect
straight lines in an image is the array H such that

Hli, 1 = [{&x, pli = |xcos b + ysinb;], 0 = ;—)T(]' + Dand I[x, y] = 1}|. Q)

J takes on the integer values 0, 1,...,p — 1. These correspond to the p angles §; = TG+ 1),

0 =j < p. Hence 0 < 6; < . For 6, in this range and x and y in the range 0. . .N — 1,

| xcos 6; + ysin; | isin the range —V2N...V2N. Hence H is at most a 2V2N X p matrix.
The general equation of a straight line can be given by the parametric equation

xcosf + ysinf =r, )

where 6 is the angle that the normal, to the line given by Equation (2), makes with the x axis
and r is the length of the normal. Any edge point (x;, y;) on this line satisfies the equation

x;cos 0 + y;sinf =r 3)
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The above equation represents a sinusoidal curve in the (r, #) space. Any point on this
curve corresponds to a line passing through (x;, ;). Thus, the curves corresponding to
all the points on a line in the (x, y) space must intersect at the same point in the (r, 6)
space. Each edge point contributes 1 to the (r, §) cells given by Equation (3) and the cells
corresponding to the local maxima give the desired lines.

The generalized Hough transform can be used to recognize curves of arbitrary shapes
[Ballard 1981]. It has been used successfully in a wide variety of domains. These include
detection of tumors in chest films, recognition of objects in aerial images, and detection
of human hemoglobin fingerprints [Ballard and Brown 1982].

The serial algorithm to compute H has complexity O(N?p). Parallel algorithms to compute
H have been developed by several researchers. Rosenfeld et al. [1988], Cypher et al. [1987],
and Guerra and Hambrusch [1987] consider mesh connected multicomputers; Fishburn and
Highnam [1987] consider scan line array processors; Ibrahim et al. [1986] consider SIMD
tree machines; and Chandran and Davis [1987] consider the use of the Butterfly and NCUBE
multicomputers to compute the Hough transform.

In this paper we develop algorithms to compute the above Hough transform on hypercube
multicomputers. First, in Section 2, we describe our model for fine-grained MIMD and
SIMD hypercubes and how to perform certain fundamental data movement operations on
a hypercube. These are used in our subsequent development of hypercube algorithms for
the Hough transform. In Section 3 we describe our Hough transform algorithm for the
MIMD hypercube. The case of an SIMD hypercube is considered in Section 4. Section 5
considers the computation of the Hough transform on a medium-grained MIMD hypercube.
Experimental results on an NCUBE/7 hypercube are also presented in this section.

2. Preliminaries
2.1. Hypercube Multicomputer

Block diagrams of an SIMD and MIMD hypercube multicomputer are given in Figures
la and 1b, respectively. The important features of an SIMD hypercube and the programming
notation we use follow:

1. There are P = 27 processing elements (PEs) connected via a hypercube interconnection
network (to be described later). Each PE has a unique index in the range [0, 2 — 1].
We shall use brackets ([]) to index an array and parentheses (()) to index PEs. Thus
A[i] refers to the i-th element of array A and A(i) refers the the A register of PE i. Also,
A[j1() refers to the j-th element of array 4 in PE i. The local memory in each PE holds
data only (that is, no executable instructions). Hence, PEs need to be able to perform
only the basic arithmetic operations (that is, no instruction fetch or decode is needed).

2. There is a separate program memory and control unit. The control unit performs instruc-
tion sequencing, fetching, and decoding. In addition, instructions and masks are broadcast
by the control unit to the PEs for execution. An instruction mask is a boolean function
used to select certain PEs to execute an instruction. For example, in the instruction
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Figure 1. Hypercube multicomputers: a) SIMD hypercube, b) MIMD hypercube.
AG@):= AG) + 1, (o = 1).

(ip, = 1) is a mask that selects only those PEs whose index has bit 0 equal to 1; that
is, odd indexed PEs increment their A registers by 1. Sometimes we shall omit the PE
indexing of registers. The above statement is therefore equivalent to the statement

A=A+ 1, Gy = ).

3. The topology of a 16-node hypercube interconnection network is shown in Figure 2.
A p-dimensional hypercube network connects 27 PEs. Let i,_ji,—,. . .ip be the binary
representation of the PE index i. Let i, be the complement of bit i;. A hypercube net-
work directly connects pairs of processors whose indices differ in exactly one bit; that
is, processor i,_i,_5. - .io is connected to processors i,_j . . .i. . -io, O<sk=p-1
We use the notation i® to represent the number that differs from i in exactly bit b.

4. Interprocessor assignments are denoted using the symbol <, while intraprocessor
assignments are denoted using the symbol :=. Thus the assignment statement

B(i®) < B(@), (i, = 0)
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Figure 2. A 16-node hypercube (dimension = 4).

is executed only by the processors with bit 2 equal to 0. These processors transmit their
B register data to the corresponding processors with bit 2 equal to 1.

5. In a unit route, data may be transmitted from one processor to another if it is directly
connected. We assume that the links in the interconnection network are unidirectional.
Hence, at any given time, data can be transferred either from PE i(i, = 0) to PE i®
or from PE i(i, = 1) to PE i®. Thus the instruction

B(i?) < B(i), (i, = 0)
takes one unit route, while the instruction
B(i®) < B()

takes two unit routes.
6. Since the asymptotic complexity of all our algorithms is determined by the number of
unit routes, our complexity analysis will count only these.

The features, notation, and assumptions for MIMD hypercubes differ from those of
SIMD hypercubes in the following way: There is no separate control unit and program
memory. The local memory of each PE holds both the data and the program that the PE
is to execute. At any given instance, different PEs may execute different instructions. In
particular, PE i may transfer data to PE {®), while PE j simultaneously transfers data to
PE j@, a # b.
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Figure 3. Mapping of the image: a) gray code mapping, b) row major mapping.

2.2. Image Mapping

Figure 3a gives a two-dimensional grid interpretation of a four-dimensional hypercube.
This is the binary-reflected gray code mapping of [Chan and Saad 1986]. An i bit binary
gray code S’ is defined recursively as

S =0, 1; 8 = 0[Si—], 1SR,

where [S,_;]R is the reverse of the k — 1 bit code S;_; and b[S] is obtained from § by
prefixing b to each entry of S. So, S, = 00, 01, 11, 10 and S5 = 000, 001, 011, 010, 110,
111, 101, 100.

If N = 27, then S,, is used. The elements of S,, are assigned to the elements of the
N X N grid in a snakelike row major order [Thompson and Kung 1977]. This mapping
has the property whereby grid elements that are neighbors are assigned to neighboring
hypercube nodes.

Figure 3b shows an alternate embedding of a 4 X 4 image grid into a four-dimensional
hypercube. The index of the PE at position (i, j) of the grid is obtained using the standard
row major mapping of a two-dimensional array onto a one-dimensional array [Horowitz
and Sahni 1985]. That is, for a N X N grid, the PE at position (i, j) has index iN + j.
With this mapping, a two-dimensional image grid [[0. . . N, 0. . .N] is easily mapped onto
an N2 hypercube (provided N is a power of 2) with one element of I per PE. Notice that,
in this mapping, image elements that are neighbors in 7 (that is, to the north, south, east,
or west of one another) may not be neighbors (that is, may not be directly connected) in
the hypercube. This does not lead to any difficulties in the algorithms we develop.

We will assume that images are mapped using the gray code mapping for all MIMD
algorithms and the row major mapping for all SIMD algorithms.
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2.3. Basic Data Manipulation Operations

2.3.1. SIMD Shift. SHIFT(A, i, W) shifts the A register data circularly counterclockwise
by i in windows of size W, Thus AW + j) is replaced by A(gW + G — i) mod W), 0
= q < (p/W). SHIFT(A, i, W) on an SIMD computer can be performed in 2 log W unit
routes [Prasanna Kumar and Krishnan 1987]. A minor modification of the algorithm given
in [Prasanna Kumar and Krishnan 1987] performs i = 27 shifts in 2 log(W/i) unit routes
[Ranka and Sahni 1990]. The wraparound feature of this shift operation is easily replaced
by an end-off zero fill feature. In this case, A(gW +j) is replaced by A(gW + Jj — i) as
long as 0 < j — i < W, and by 0 otherwise. This change does not increase the number
of unit routes. The end-off shift will be denoted ESHIFT(A, i, W).

2.3.2. MIMD Shift. When i is a power of 2, SHIFT| (4, i, W) on an MIMD computer can
be performed in O(1) unit routes. An MIMD shift of 1 takes one unit route, of 2 takes
two unit routes, of N/2 takes four, and the remaining power of 2 shifts take three routes
each. For any arbitrary i the shift can be completed in 3(log W)/2 + 1 unit routes on an
MIMD computer [Ranka and Sahni 1990]. As in the case of the SIMD shift, the MIMD
shift is also easily modified to an end-off zero fill shift without increasing the number of
unit routes.

2.3.3. Data Circulation on an SIMD Hypercube. The data in the A registers of each of
the R processors in an R processor subhypercube are to be circulated through each of the
remaining R-1 PEs in the subhypercube. This can be accomplished using R-1 unit routes.
The circulation algorithm uses exchange sequence X,, R = 2" defined recursively as [Dekel
et al. 1981]

X, = 0, Xq = Xq—la q -1, Xq—l(q > 1.

This sequence essentially treats a g-dimensional hypercube as two ¢ — 1-dimensional hyper-
cubes. Data circulation is done in each of these in parallel using X, _;. Next, an exchange
is done along bit g — 1. This causes the data in the two halves to be swapped. The swapped
data are again circulated in the two half hypercubes using X,_1. Let fr, i) be the i-th
number (left to right) in the sequence X,, 1 =i < 2". The resulting SIMD data circula-
tion algorithm is given in Figure 4. Here, it is assumed that the 7 bits that define the subhyper-
cube are bits 0, 1, 2,...r — 1. Because of our assumption of unidirectional links, each
iteration of the for loop of Figure 4 takes two unit routes. Hence Figure 4 takes 2(R — 1)
unit routes. The function f can be computed by the control processor in O(R) time and
saved in an array of size R — 1 (actually it is convenient to compute f on the fly using
a stack of height log R). The following lemma allows each processor to compute the origin
of the current A value.

Lemma 1. [Ranka and Sahni 1990] Let Ao, Ay,. .., Ay_; be the values in A0), AQ),. . .,
A(2" — 1) initially. Let index(j, i) be such that Alindex(j, i)] is in A(j) following the i-th
iteration of the for loop of Figure 4. Initially, index(j, 0) = j. Forevery i, i > 0, index(j, i)
= index(j, i—1)62f") (9 is the exclusive or operator).
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procedure CIRCULATE(A);
[data circulation]
fori:=1to R—1 do
A(ID) — A(G);

end

Figure. 4. Data circulation in an SIMD hypercube.

procedure ACCUM(A,LM)
{each PE accumulates in A, the I values of the next
M PEs, including itself; P is the window size}

begin
Al0] == I
fori:=1to M —1 do
begin
SHIFT(I,-1,P):
AlZ) == I,
end

end {ACCUM}

Figure 5. Data accumulation.

2.34. Data Accumulation on an MIMD Hypercube. For this operation, PE j has an array
A[0. . .M — 1] of size M. In addition, each PE has a value in its I register. After the data
accumulation, the M elements of A in each PE j are such that

Ali] (gray ()) = I (gray (( + i) mod P)), 0 =i < M, 0 = j < P.

This can be accomplished in M — 1 unit routes (for P > 2) by repeatedly shifting by
—1 in windows of size P. The algorithm is given in Figure 5.

2.3.5. Data Accumulation on an SIMD Hypercube. After the data accumulation, the M
elements of A in each PE j are such that

A1 G) =T1((+ hmodP),0 <i<MO0=<j<P

Data accumulation may be done efficiently by modifying the data circulation algorithm.
It can be completed in 2(M — 1) + log,(N/M) unit routes on an SIMD hypercube.
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2.4. Initial and Final Configurations

We shall explicitly consider the computation of H(, j) only for i > 0. The computation
for the case i < 0 is similar. Hence, i is in the range [0, V/2N) and J is in the range
[0, p). We assume that N is a power of two and that 2N? PEs are available. These are viewed
asan N X 2N array, as discussed in Section 2.2 for SIMD and MIMD hypercubes. Actually,
only N X v2N PEs are needed,; however, a hypercube must have a power of 2 processors.
Furthermore, it is assumed that p divides N. i

The image pixel I[i, j] is initially stored in PE [i, /] 0 < i, j < N in the above array
view. H[i, j] is stored in PE[j, i] on completion.

3. MIMD Algorithm

Conceptually, our algorithm is similar to that of Cypher et al. [1987]. It computes the Hough
transform in O(p + N) time on an N X N SIMD mesh-connected computer. We show how
this algorithm can be mapped onto an MIMD hypercube with 2N2 processors. The com-
plexity of the resulting hypercube algorithm is O(p + log N).

For simplicity, we divide the computation of H[i, j], i > 0,0 < j < p into four parts.
These, respectively, correspond to the cases 0 < j < p/4, p/4 < j < pR2,pl2 =j <
3p/4, and 3p/4 < j < p. First, consider the case p/4 < j < p/2. Now, /4 < 0, < w/2.
The following lemmas will suggest a computational scheme for this case.

LEMMA 3.1. When 7/4 < 6, < /2, two pixels (x, y) and (x, y + z), z > 0, can con-
tribute to the count of the same H[i, j] only if z = 1.

Proof. If (x, y) and (x, y + z) both contribute to the count of H[i, j] then
i = |xcos b + ysin6] = [xcosf + (y + 2) sin 6
for some j, p/4 < j < p/2. Hence,

O+ 2)sinf — ysinf, <1
orzsinf; < 1.

Since /4 < 6; < /2, sin 6; > sin w/4 > 0.5. Since z is a positive integer, only z = 1
can satisfy the relation z sin 6, < 1.

LemMmA 3.2. When 7/4 < 6; = w/2, two pixels (x, y) and (x + 1, z) can contribute to
the count of the same HI[i, j] only if z € {y, y — 1}.

Proof. 1f (x, y) and (x + 1, z) contribute to the same H[i, j], then i = |x cos 0, +
ysin6;] = [(x + 1)cos 6 + zsinb,].
So, |(x + 1) cos 6; — x cos 0+ (z —ysinf| <1
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or|cosf + (z—ysinf| <1
or | cot 6; + (z — y)| = cosec 6,
or —cosec §; — cot 0; = z — y =< cosec 6; — cot 6;.

Since y and z are integers and 6; is in the above range, it follows that -1 <z —y < 0.
Hence, z € {y, y — 1}. '

The computation of H[i, j] for i > 0 and 7/4 < 6; < 7/2 can be done in two phases.
In the first, subhypercubes of size p X 2N compute A[i, jl = |{x, y)|li = |x cos 6, +
y sin Ojj , T4 < 0; < w/2, I[x, y] = 1, and (x, y) is in this subhypercube. In the second
phase, the A[i, j] values from the different subhypercubes are summed to obtain

Hi, jl = >, Rl jl,i> 0 pl4<j<pl.
subhypercubes

The phase 1 algorithm for each PE in a p X 2N subhypercube is given in Figure 6. In
this algorithm, [x, y] denotes a PE index relative to the whole N X 2N hypercube and [w, y]
denotes the index of the same PE relative to the p X 2N subhypercube it is in. Note that
w =x mod p.

The h values are computed in a pipeline manner. The PEs in row 0 of ap X 2N subhyper-
cube initiate a record Z = (i, j, sine, cosine, g) such that A[i, j] = g is the number of
pixels on this row that contribute to A[i, j]. This is done by first computing i for each pixel
in row zero (line 7) for a fixed j = p/2 — { — 2. Lemma 3.1 is used in lines 22-24 to
combine records that represent the same A[i, j] entry. This row of Z records created in
row zero moves down the p X 2N subhypercube one row per iteration (line 25). Lines
10-21 update the row of Z values received. Each such row corresponds to a fixed j. For
this j, PE[w, y] determines the % entry [i’, j] to which it is to contribute (line 13). If this
is the same entry as received from PE[w — 1, y], then the two are added together. If i
= ¢ for the received entry, then [i', j] can occupy this Z space. If i = ¢, then from Lemma
3.2 we know that Z can combine only with the new entry [i}, j] of PE[w, y — 1].

Following the iteration £ = 5p/4 — 1, the last initiated row (i.e., j = p/4) has passed
through row p — 1 of the p X 2N subhypercube. At this time, the PEs in row r of the
subhypercube contain records with j = p/4 + r, 0 < r < p/4. The records in each row
may be reordered such that the record in PE[w, y] has y = i by performing a random access
write [Nassimi and Sahni 1981]. Because of the initial ordering of i values in a row, this
random access write can be performed in O(log N) time [Ranka and Sahni 1990] rather
than in O(log? N) time as required by the more general algorithm [Nassimi and Sahni 1981].

The phase 2 summing of the A[i, j] values is now easily done in O(log N) time using
a window sum. Since the phase 1 algorithm of Figure 6 only shifts by 1 along columns
and/or rows, each iteration of this algorithm takes only 0(1) time. Hence, the complexity
of the phase 1 algorithm is O(p). The overall time needed to compute H for p/4 = x <
p/2 is therefore O(p + log N).

The remaining three cases for j are done in a similar way. Actually, the four cases need
not be computed independently as suggested above. In particular, all the computation follow-
ing phase 1 can be done in parallel for all the cases.
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1 forl:=0tobp/4—1 do

2 if (w=0) and (¢ < p/4) then

3 [{row 0 initiates next 6;}

4 create a record Z = (1, j, sine, cosine, q)

5 with

6 sine=sin(f), cosine= cos(f), where § = 2(p/2 =L+ m)
7 i = |z cosine +y sine|, j=p/2 = —1

8 q = I[z,y]]

9 else [if max{1,{ —p/4 +1} <w <fandy < N

10 then {add in this PE’s contribution}

11 [Let Z be the record received from PE[w — 1, ]

12 Let i = |2 cosine +y sine | and ¢’ = I[z, y]

13 ife=1"thenset q=q+¢

14 else ift = ¢ thenset 1 =i and g = ¢

i) else [send ¢ to PE[z, (y — 1) mod 2N]

16 set Z = (7', , sine, cosine , ¢')]

17 if a ¢ is received from PE[z,y 4 1] update own ¢
18 to ¢+ received ¢]

19 else if y > N and a Z is received from PE[z, (y + 1) mod 2N]
20 then send old Z (if any) to PE on left ]

21 {combine records with same (3, j) values}

22 if (|z cosine +y sine| = |z cosine +(y — 1) sine|) and (0 <y < N)
23 then send h to PE[z,y — 1] and set ¢ = ¢

24 else if a g value is received set ¢ = g+ received g;

25 send Z to PE[(w 4 1) mod p, y]]
26 end

Figure 6. MIMD algorithm.

4. SIMD Algorithms

We develop two O(p + log N) SIMD hypercube algorithms. One uses O(log N) memory per
PE while the other uses 0(1). The O(1) memory algorithm is slightly more complex than
that with O(log N) memory. Both algorithms are adaptations of our MIMD algorithm. The
computations following phase 1 (Figure 6) are easily performed in O(log N) time on an
SIMD hypercube using 0(1) memory per PE. So we concentrate on adapting phase 1. The
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phase 1 algorithm performs O(p) unit shifts along the rows and columns of p X 2N subhyper-
cubes. In an SIMD hypercube, each such row shift takes O(log N) time while each unit
column shift takes O(log p) time. So a direct simulation of phase 1 takes O(p log(Np)) time.

4.1. O(log N) Memory per PE

In this case, we divide the 5p/4 iterations for the for loop of Figure 6 into blocks of log N
consecutive iterations. In each such block, a Z record initially in PE[x, y] can be augmented
by pixel values in PEs [x + ¢,y — m], 0 < { < log N, =1 <= m < log N. To avoid
unit shifts along the rows, each PE[q, r] begins by accumulating the pixel value in PE[g,
r —m], =1 < m < log N. Now it is necessary to route the Z records only down a column;
that is, a Z record initially in PE [x, y] needs to visit PEs [x + £, y], 0 < ¢ < log N.
These PEs contain the pixel values needed to update Z to its values following the block
of iterations in Figure 6. This routing is done using the circulation algorithms in windows
of size log N rather than by unit shifts. The initial pixel accumulation takes O(log N) time,
and the circulation and Z updates also take O(log N) time. Following the circulation, the
Z records return to their originating PEs and need to be routed left and down by a distance
of 0(log N). This can be accomplished in O(log N) time on an SIMD hypercube. In this
way, we are able to simulate O(log N) iterations of the MIMD algorithm in O(log N) time
on an SIMD hypercube. Hence, the overall asymptotic run time of the SIMD simulation
is the same as that of the original MIMD algorithm.

4.2. 0(1) Memory per PE

When (log?N)/p < ¢ for some constant, a careful analysis shows that using the strategy
employed in the O(log N) memory algorithm, the memory requirements can be reduced
to 0(1). In any log N block of iterations, two pixels [x, y] and [w, z] contribute to the same
Z record only if

|xcos@ + ysin@] = |[wcosf + zsinf].
Since w < x + log N — 1 during the log N iterations, we get

|(log N — 1) cos 6 +(z — y)sin 0| <1
or —cosec § < (log N — l)cot § + z —

= y < cosec 0
or —cosec § < (log N — Deot <z — y

cosec 8 — (log N — 1) cot 6.

A A

For any fixed 0 € [7/4, ©/2],

zZ€[y — (logN — Dcot @ — cosec 6, y — (log N — 1)cot § + cosec 0]
orz€[y— (logN — Deot§ — V2, y — (log N — 1) cot 6 + V2].

There is only a constant number of integers in this range. During a log N block of itera-
tions, Z records with j value differing by up to log N — 1 may pass through a given PE.
This corresponds to a § variation from 6; to 6, where 6, — 6; = [—’: (log N — 1).
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Hence, the leftmost column from which a contributing pixel is required has a maximum
range of

cosec §; + (log N — 1) cot 6; — cosec §, — (log N — 1) cot 6,
cosec 0 — cosec 0, + (log N — 1)(cot 6; — cot 6,)
cosec m/4 + (log N — 1) <08 i sinb, — cos b, sin 6,
sin 6, sin 6,
cosec /4 + 2(log N — 1) sin(d, — 6,)
cosec w/4 + 2(log N — 1)(6, — 6))
cosec 7 + 2(log N — D)(log N — D7lp .
cosec w4 + 2mc.

A LA ANINIA

Hence, each PE need accumulate only a constant number of pixels from its row rather than
the O(log N) pixels being accumulated in the O(log N) memory algorithm. This accumulation
is done in O(log N) time. The run time is the same as that of the O(log N) memory algorithm,
but the memory requirements are reduced to O(1).

5. Hough Transform on the NCUBE Hypercube
5.1. NCUBE Architecture

In the previous sections we have developed algorithms to compute the Hough transform
on a fine-grained hypercube. In such a computer, the cost of interprocessor communication
is comparable to that of a basic arithmetic operation. In this section, we shall consider the
Hough transform on a hypercube in which interprocessor communication is relatively expen-
sive and the number of processors is small relative to the number of patterns N. In particular,
we shall experiment with an NCUBE/7 hypercube which is capable of having up to 128
processors. The NCUBE/7 available to us, however, has only 64 processors. The time to
perform a 2-byte integer addition on each hypercube processor is 4.3 microseconds, whereas
the time to communicate b bytes to a neighbor processor is approximately 447 + 2.4b
microseconds. Figure 7 shows the block diagram for the NCUBE/7 hypercube multicomputer.

The size of the image and the Hough array is O(N?) and O(Np), respectively. These sizes
are comparable for typical values of N and p (N is typically 1024 or 2048, while p varies
from 45 to 180). The Hough array may be smaller, if the Hough transform is calculated
for a smaller set of angles. Note that in a digitized image, p has an upper bound of O(N)
under reasonable assumptions. Due to the large amount of memory requirements needed
to store the image array and the Hough space, we feel that it is unreasonable to assume
that every node has a copy of the image and/or the Hough array. This will be true in any
parallel integrated vision system in which information will be saved at the nodes between
intermediate stages. Thus, the amount of memory available for performing the Hough
transform will only be a part of the total memory. The total amount of memory available
on each NCUBE/7 node is only 512K (including the space for system routines, system stacks,
message buffers, and program code). Thus, the image has to be initially subdivided among
all the nodes. The division of the image among all the nodes will also be required by any
parallel edge detection algorithm to be performed before Hough transform computation.
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Figure 7. NCUBE/7 hypercube.
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Figure 8 A ring (of size 8) embedded in a hypercube of eight nodes.

The Hough array also needs to be distributed among all the nodes due to its size. This
will also be preferred by a parallel local maxima finding or clustering algorithm to find
the points in the Hough space corresponding to the lines in the image space (after the Hough
transform has been performed).

The rest of this section will assume the image and the Hough array have to be distributed
because of the above reasons.

5.2. Two NCUBE Algorithms

We view the P hypercube nodes as forming rings. Figure 8 shows this ring for the case
P = 8. For any node i, let left (i) and right (i), respectively, be the node counterclockwise
and clockwise from node i. Let logical (i) be the logical index of node 7 in the ring. The
N X N image array is initially distributed over the nodes with each node getting an N X
N/gp block. Logical node 0 gets the first block, logical node 1 the next block, and so on.
Similarly, on completion, the 2V2N X p Hough array H is distributed over the nodes in
blocks of size 2V2N X p/P. We assume that the number of hypercube nodes P divides
the number of angles p as well as the image dimension N. It is further assumed that the
thresholding function has already been applied to the pixels and each node has a list of
pairs (x, y) such that ITx, y] passes the threshold. We call this list the edge list for the node.
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procedure UpdateHpartition (H)
for each (z,y) in edge list do
for (j := jBegin to jBegin + size —1 do
0=2(j+1)
1 =acosf +ysinb
increment H[7,6] by 1

end,

7

end,

end; {of UpdateHpartition}

£ := logical index of this node, size:=p/P;

7 Begin:= size */{

initialize own H partition to zero;

fori:=0to P—1 do
UpdateH partition;
send own H partition to node on right;
receive H partition from node on left;
JBegin := (jBegin— size) mod p;

end,

Figure 9. Nonoverlapping algorithm to compute H.

Our first algorithm is given in Figure 9. This algorithm is run on each hypercube node.
As remarked earlier, each node has an edge list and an H partition.

The H partitions move along the ring one node at a time. When an H partition reaches
any node, the edge list of that node is used to update it, accounting for all contributions
these edges make to this H partition. Procedure UpdateH partition does precisely this. jBegin
is the j value corresponding to the first angle (column) in the H partition currently in the
node. size = p/P is the number of columns in an H partition.

In the algorithm of Figure 9 no attempt is made to overlap computation with communica-
tion. Following the send of an H partition to its right neighbor, the node is idle until the
receive of the H partition from its left neighbor is complete. Figure 10 shows the activity
of a node as a function of time.

During the compute phase, an H partition is updated. Let ¢, be the time needed to do
this. Let ¢, be the time for an H partition to travel from a sending node to its destination
node. So ¢, is the elapsed time between the initiation of the transfer and the receipt of the
partition. The time required by the nonoverlapping algorithm of Figure 9 is P(z, + t,).

Our second algorithm (Figure 11) attempts to overlap much of the transmission tim¢ ,
with computation. This, unfortunately, increases the computation time since some additional
work must be done. At the end of each iteration of the for loop, the H partition in a node
£ is sent to the node on its right. The next iteration proceeeds while the H partition is in
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Compute | send/receive | compute | send/receive

0 time—

Figure 10. Nonoverlapping algorithm to compute H.

£ := logical index of this node; size = p/P;
jBegin:= size *{; '
fori:=0to P—1 do

if 1 = 0 then [initialize own H partition to zero

UpdateH Partition (H)]
else [initialize T to zero

UpdateHPartition (T')
Receive H Partition from left (£)
H:=H+T]

send H to right (¢);

JBegin:=(jBegin-size) mod p

end,

Figure I1. Overlapping algorithm for H.

transit. For this, a temporary space T of the same size as H is used to accumulate the con-
tribution of the node’s edge list to the H partition it has yet to receive from its left neighbor.
Following this computation, the received H portion and T are added as the resulting H
partition is transmitted to the right.

Relative to the nonoverlapping algorithm, the overlapping algorithm does P — 1 initializa-
tions of T and executions of H: = H + T extra computational work. Let #;,;, be the time
to initialize T and z,,, the time to execute H:= H + T If t, < t,,;, + ¢., the time diagram
has the form shown in Figure 12a. The overall time for the algorithm is Pz, + (P — 1)(#;,;
+ t0) + 1, when t, < t;,;, + t.. So if t;,;, + t,4; < t,, the overlapping algorithm will out-
perform the nonoverlapping algorithm.

te

tinit + b | tadd | inie + o | toda |
I P R

Figure 12a. t, < t,, + t.



184 S. RANKA AND S. SAHNI

te | tina +1c | A I ladd | Tinit +1c | A | tadd |
R
Figure I2b. t, = t,,, + t. A, A > 0.

When ¢, = t;,;, + t. + At, At > 0, the time diagram is as in Figure 12b. In this case, the
algorithm run time is ¢, + (P — Dty + Pt; = Pt, + (P — D(tipi + tyqq + A) + £,. For the
overlapping algorithm to outperform the nonoverlapping algorithm, we need
Ly T laga + A< 1.

5.3. Load Balancing

The preceding analysis is somewhat idealistic since it assumes that z, is the same in each
node. Actually, the size of the edge list in each node is different and this difference signifi-
cantly affects the performance of the algorithm. The node with the maximum number of
edges becomes a bottleneck. To reduce the run time, one may attempt to obtain an equal
or nearly equal distribution of the edges over the P nodes. Note that even though the image
matrix / is equally distributed over the nodes, the edge lists may not be, since a different
number of pixels in each [ partition will pass the threshold. We shall use the term load
to refer to the number of pixels in a node that passes this threshold. That is, load is the
size of the nodes’ edge list. Two heuristics to balance the load are given in Figures 13 and 14.

In both, load balancing is accomplished by averaging over the load in processors that
are directly connected. The variables used have the following significance:

MyLoad = current load in the node processor
HisLoad = load in a directly connected node processor
MyLoadSize = size of the load in the node processor
His Load Size = size of the load in a directly connected node processor
avg = average size of the load of the two processors

The only difference between the two variations is that in the first a processor transmits
its entire work load (including the necessary data) to its neighbor processor, while in the
second variation only the amount in excess of the average is transmitted. However, to achieve
this reduction in load transmission, it is necessary to first determine how much of the load
is to be transmitted. This requires an initial exchange of the load size. Hence, variation 2
requires twice as many message transmissions. Each message of variation 2 is potentially
shorter than each message transmitted by variation 1. We expect variation 1 to be faster
than variation 2 when the number of bytes in MyLoad and HisLoad is relatively small
and the time to set up a data transmission is relatively large. Otherwise, variation 2 is
expected to require less time.
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procedure LoadBalancel();

for i := 0 to CubeSize do
Send MyLoad to neighbor processor along dimension ¢;
Receive HisLoad from neighbor processor along dimension ¢
and append to Myload;
avg=(MyLoadSize+HisLoadSize+1)/2;
if (MyLoadSize > Avg) MyLoadSize=Avg;
else if (HisloadSize>Avg) MyLoadSize+=HisLoadSize - Avg;

end,

end;

Figure 13. Load balancing (heuristic 1).

procedure LoadBalance2();
{
for i := 0 to CubeSize do
Send MyLoadSize to neighbor processor along dimension i;
Receive HisLoadSize from neighbor processor along
dimension ;
avg=(MyLoadSize+HisLoadSize+1)/2;
if (MyLoadSize > Avg)[
Send extra load (MyLoadSize—Avg) to neighbor
processor along dimension ¢;
MyLoadSize = Avg; ]
else if (HisLoadSize>Avg)[
Receive extra load (Avg—HisLoadSize) from neighbor
processor along dimension
MyLoadSize+ =HisLoadSize—Avg;)
end;

end,;
Figure 14. Load balancing (heuristic 2).

5.4. Experimental Results

The nonoverlapping and overlapping algorithm of Section 5.2, as well as the load balancing
heuristics of Section 5.3, were programmed in C and run on an NCUBE/7 hypercube with
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64 nodes. We experimented with randomly generated images of size N X N for N = 32,
64, 128, 256, and 512. The percentage of pixels in an N X N image that passed the threshold
was fixed at 5%, 10%, or 20%. The number of edge pixels in each nodes I partition was
determined using a truncated normal distribution with variance being one of 4%, 10%,
and 64% of the mean. In all cases, we arbitrarily set p = 180. We keep p fixed for all
image sizes to observe the effects of increase in the image size on the speedup achieved,
with the same number of processors.

Preliminary experiments indicated that the run time of our two load-balancing heuristics
was approximately the same, with the second heuristic having a slight edge. Furthermore,
the time to load balance is less than 2% of the overall run time (load balance followed
by Hough transform computation). The run times of the nonoverlapping algorithm, both
with and without load balancing, are given in Tables 1, 2, and 3 for the cases of P = 4,
16, and 64, respectively. We see that as the load variance increases from 4% to 64 % , the
run time of the nonoverlapping algorithm without load balancing increases significantly.

Tuble 1. Run times (in seconds) for nonoverlapping algorithm, P = 4.

Image Size % No Load Balancing Load Balance 2
Variance
edges 4% 16% 64 % 4% 16% 64 %
32x32 5 0.2802 0.3138 0.3940 0.2819 0.2785 0.2804

10 0.5627 0.6035 1.1563 0.5531 0.5527 0.5527
20 1.1439 1.3364 1.7874 1.0976 1.0956 1.0967
64 x64 5 1.1465 1.3044 1.7575 1.1202 1.1187 1.1176
10 2.2428 2.4485 3.4152 2.1878  2.1853 2.1818
20 4.4974 4.7970 8.0548 4.3171 4.3238 4.3190
128 x128 5 4.4966 5.0359 7.8626 4.3605 4.3550 4.3564
10 8.9968 10.0017 15.5813 8.6474 8.6393 8.6423
20 18.0087 19.1119  31.7456 17.2247 17.2349 17.2108

Table 2. Run times (in seconds) for nonoverlapping algorithm, P = 16.

Image Size % No Load Balancing Load Balance 2
Variance
edges 4% 16% 64 % 4% 16% 64 %
64 x64 5 0.2964 0.3494 0.5622 0.2981 0.3012 0.2922

10 0.5949 0.6803 1.1556 0.5927 0.5830 0.5712
20 1.1827 1.4140 2.0260 1.1615 1.1574 1.1313
128 X128 ] 1.2088 1.4113 2.2415 1.1915 1.1798 1.1570
10 2.3558 2.7429 5.3075 2.3256 2.3065 2.2469
20 4.6616 5.3293 9.0813 4.5909 4.5600 4.4518
256 X250 5 4.6854 5.6429 9.3724 4.6283 4.5810 4.4624
10 9.3130 11.0024 18.0237 9.1721 9.1270 8.8296
20 18.4712  21.4809  33.9781 18.2738 18.1359 17.6917
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In fact, it almost doubles. With load balancing, however, the run time is quite stable.
Furthermore, it is always less than the run time for 4% variance without load blancing.
When the variance in load is 64 %, load balancing results in a 25% to 53% reduction
in run time!

Note that the average load per node when P = 4 and N = 128 is the same as when
P = 16 and N = 256 and when P = 64 and N = 512. From Tables 1-3 we see that run
time remains virtually unchanged as P increases, provided the load per node is unchanged.
Hence, the algorithm scales well. :

The run times for the overlapping algorithm with load balancing are given in Tables 4
and 5. These times are generally slightly larger than those for the nonoverlapping algorithm
with load balancing. So, the computational overhead introduced by the overlapping algorithm
more or less balances the positive effects of overlapping computation and communication.

For comparison purposes, the run times on a single hypercube node are given in Table
6 for the cases N = 16, 32, and 64. The case N = 128 could not be run for lack of suffi-
cient memory.

Table 3. Run times (in seconds) for nonoverlapping algorithm, P = 64.

Image Size % No Load Balancing Load Balance 2
Variance
edges 4% 16% 64 % 4% 16% 64 %
128x128 5 0.3462 0.4200 0.6449 0.3416 0.3481 0.3400

10 0.6512 0.7735 1.3975 0.6313 0.6315 0.6232
20 1.2692 1.5239 2.8156 1.2051 1.2062 1.1960
256 X256 5 1.2638 1.5371 2.7062 1.2291 1.2229 1.2057
10 2.4770 2.9324 5.1395 2.3543 2.3476 2.3288
20 4.9057 6.0051 11.4614 4.6170 4.6020 4.5470
512512 5 4.9077 5.8094 10.8207 4.6485 4.6232 4.5784
10 9.7492 11.7256  20.7631 9.1908 9.1611 9.0623
20 19.3672  23.9020  38.0617 18.2782 18.2166 18.0306

Table 4. Run times (in seconds) for overlapping algorithm, P = 4.

Block Size % P =4
edges 4% 16% 64 %
32%32 5 0.3704 0.3689 0.3708
10 0.6424 0.6425 0.6925
20 1.1862 1.1851 1.1857
64 X 64 5 1.3030 1.3011 1.3009
10 2.3686 2.3680 2.3614
20 4.4927 4.4967 4.4956
128128 5 4.7045 ©4.6999 4.7019
10 8.9787 8.9760 8.9835

20 17.5374 17.5426 17.5304
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Table 5. Run times (in seconds) for overlapping algorithms, P = 16 and P = 64.
Block Size % P =16 P =64
Edges 4% 16% 64 % 4% 16% 64 %

32X%32 5 0.4081 0.4152 0.4094 0.4578 0.4619 0.4597
10 0.6843 0.6806 - 0.6810 0.7328 0.7349 0.7303
20 1.2211 . 1.2263 1.2275 1.2705 1.2752 1.2743
64 x64 5 1.3675 1.3682 1.3685 1.4292 1.4214 1.4173
10 2.4359 2.4324 2.4307 2.4802 2.4848 2.4860
20 4.5572 4.5603 4.5570 4.6034 4.6039 4.6100
128 X128 5 4.8167 4.8148 4.8151 4.8761 4.8691 4.8718
10 9.0806 9.0850 9.0970 9.1464 9.1467 9.1344
20 17.6483 17.6388 17.6390  17.6879 17.6730  17.6907

Table 6. Run times for one processor.

Image Size % Edges Time in Seconds
16 x16 5 0.3005
10 0.5636
20 1.1016
32x32 5 1.1597
10 2.2209
20 4.3527
64 x64 5 4.4399
10 8.7194
20 17.2660

Speedup and efficiency are common measures of the quality of a parallel algorithm.
Speedup is defined as

g — run time
7 time taken by a uniprocessor ’

while efficiency, E,, is defined as

E, =

IS

Table 7 gives the speedup and efficiency figure achieved by our nonoverlapping algo-
rithm with load balancing for the following cases: variance = 64%, % edges = 20, and
N = 64 and 128.

Conclusions

Consider the binary mapping of an image onto a SIMD hypercube. It can be shown
that there are at least two pixels, (0, 0) and (0, N — I)(N = 27), which can potentially
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Table 7. Speedup and efficiency of nonoverlapping algorithm. No overlap between communication/computation;
variance of edges = 64%.

Image = 64 X 64 Image = 128 X 128
No. of
Edges Nodes Time Speedup Efficiency Time Est. Speedup Est. Efficiency
5 1 3.8603 1.0000
4 0.9787 3.9440 0.9860 0.3964 3.9440 0.9860
16 0.2844 13.5728 0.8483 1.0734 14.5640 0.9103
64 0.1551 24.8754 0.3886 6.3414 45.7945 0.7155
10 1 7.6151 1.0000
4 1.91169 3.9724 0.9931 8.3301 3.9724 0.9931
16 0.5263 14.4682 0.9043 2.2187 14.9288 0.9331
64 0.2046 37.2515 0.5821 0.6278 52.7058 0.8234
20 1 15.6470 1.0000
4 3.9246 3.9868 0.9967 17.0167 3.9868 0.9967
16 1.0529 14.8604 0.9287 4.4732 15.1660 0.9478
64 0.3374 46.3741 0.7246 1.1777 56.6400 0.8850

contribute to the Hough array value (0, 0). The distance between (0, 0) and (0, N — 1)
is O(log N). Thus any algorithm will require at least O(log N) unit routes to complete.
Since the time complexity of the serial algorithm is ©(N?p), any algorithm will require
Q(p + log N) time to complete on an N? node SIMD hypercube. Hence, our algorithm,
assuming the binary mapping, for the SIMD hypercube is optimal up to a constant factor.
By a similar argument it can be shown that our MIMD algorithm, assuming the gray code
mapping, is also optimal up to a constant factor.

We have also shown that our algorithms for the medium- gralned hypercube exhibit near-
optimal speedups when load balancing is done.
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