
GRS - GPU Radix Sort For Multifield Records*
Shibdas Bandyopadhyay and Sartaj Sahni

Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL 32611

shibdas@ufl.edu, sahni@cise.ufl.edu

Abstract—We extend the number sorting algorithms on the
GPU to sort large multi-field records. We notice that traditional
way of sorting the records by first sorting a (key, index) pair to
obtain the sorted permutation of the records followed by actually
rearranging the entire records to their final position might not
actually be the most efficient way to sort them depending on the
type of sorting algorithm used and the layouts of the records in
the memory.

Index Terms—Graphics Processing Units, sorting multifield
records, radix sort, merge sort, sample sort.

I. INTRODUCTION

Graphics Processing Units (GPUs) are fast becoming an
essential component of the desktop computers. Cheap prices
and massively parallel computation capability make them a
viable choice for supercomputing on desktop in addition to
accelerating games and other graphics intensive tasks. From
the view of general purpose computation, GPUs are manycore
processors capable of running thousands of threads at once
with a very little context switching overhead. NVIDIA’s Tesla
GPUs come with 240 scalar processing cores (SPs) [13], 8 of
them are grouped into a Streaming multiprocessor (SM). So,
there are a total of 30 SMs. Each SM has a 16 KB fast shared
memory which is shared among the threads running on that
SM. There is also a vast register file comprising of 16384 32-
bit registers which are used to store local variables of threads
and states of numerous threads for context switching purposes.
Being a graphics processor, each SM also includes texture
caches to make fast texture look-up. It also has a small read
only constant memory. Each Tesla GPU comes with a 4GB off-
chip global (or device) memory. Figure 1 shows a brief outline
of the Tesla architecture. With the recent Fermi series of
GPUs, many features including L1 and L2 cache hierarchy are
introduced to make them more suitable toward general purpose
computing. GPUs can now be programmed using general
purpose languages such as C with Application Programming
Interfaces (APIs) like OpenCL or Nvidia specfic C extension
known as Compute Unified Driver Architecture (CUDA) [22].
During recent years, there has been a explosion of research
directed toward expanding the applicability of GPUs to the
fundamental high performance computing problems such as
sorting.

* This research was supported, in part, by the National Science Foundation
under grants 0829916 and 0963812. The authors acknowledge the University
of Florida High-Performance Computing Center for providing computational
resources and support that have contributed to the research results reported
within this paper. URL: http://hpc.ufl.edu.

One of the very first GPU sorting algorithms, an adaptation
of bitonic sort, was developed by Govindraju et al. [5]. Since
this algorithm was developed before the advent of CUDA,
the algorithm was implemented using GPU pixel shaders.
Zachmann et al. [6] improved on this sort algorithm by
using BitonicTrees to reduce the number of comparisons
while merging the bitonic sequences. Cederman et al. [4]
have adapted quick sort for GPUs. Their adaptation first
partitions the sequence to be sorted into subsequences, sorts
these subsequences in parallel, and then merges the sorted
subsequences in parallel. A hybrid sort algorithm that splits
the data using bucket sort and then merges the data using a
vectorized version of merge sort is proposed by Sintron et al.
[17]. Satish et al. [15] have developed an even faster merge
sort The fastest GPU merge sort algorithm known at this time
is Warpsort [20]. Warpsort first creates sorted sequences using
bitonic sort; each sorted sequence being created by a thread
warp. The sorted sequences are merged in pairs until too few
sequences remain. The remaining sequences are partitioned
into subsequences that can be pairwise merged independently
and finally this pairwise merging is done with each warp
merging a pair of subsequences. Experimental results reported
in [20] indicate that Warpsort is about 30% faster than the
merge sort algorithm of [15]. Another comparison-based sort
for GPUs–GPU sample sort–was developed by Leischner et
al. [11]. Sample sort is reported to be about 30% faster than
the merge sort of [15], on average, when the keys are 32-
bit integers. This would make sample sort competitive with
Warpsort for 32-bit keys. For 64-bit keys, sample sort is twice
as fast, on average, as the merge sort of [15].

[16], [21], [10], [15], [12] have adapted radix sort to GPUs.
Radix sort accomplishes the sort in phases where each phase
sorts on a digit of the key using, typically, either a count sort
or a bucket sort. The counting to be done in each phase may
be carried out using a prefix sum or scan [3] operation that
is quite efficiently done on a GPU [16]. Harris et al.’s [21]
adaptation of radix sort to GPUs uses the radix 2 (i.e., each
phase sorts on a bit of the key) and uses the bitsplit technique
of [3] in each phase of the radix sort to reorder records by
the bit being considered in that phase. This implementation
of radix sort is available in the CUDA Data Parallel Primitive
(CUDPP) library [21]. For 32-bit keys, this implementation
of radix sort requires 32 phases. In each phase, expensive
scatter operations to/from the global memory are made. Le
Grand et al. [10] reduce the number of phases and hence the
number of expensive scatters to global memory by using a



Fig. 1: NVIDIA’s Tesla GPU [15]

larger radix, 2b, for b > 0. A radix of 16, for example, reduces
the number of phases from 32 to 8. The sort in each phase
is done by first computing the histogram of the 2b possible
values that a digit with radix 2b may have. Satish et al. [15]
further improve the 2b-radix sort of Le Grand et al. [10] by
sorting blocks of data in shared memory before writing to
global memory. This reduces the randomness of the scatter
to global memory, which, in turn, improves performance. The
radix-sort implementation of Satish et al. [15] is included in
NVIDIA’s CUDA SDK 3.0. Merrill and Grimshaw [12] have
developed an alternative radix sort, SRTS, for GPUs that is
based on a highly optimized algorithm, developed by them, for
the scan operation and co-mingling of several logical steps of
a radix sort so as to reduce accesses to device/global memory.
Presently, SRTS is the fastest GPU radix sort algorithm for
integers as well as for records that have a 32-bit key and a

32-bit value field. Bandyopadhyay and Sahni [1] developed
a radix sort algorithm which outperforms SDK radix sort
algorithm while sorting integers and outperforms SRTS in
hybrid layout while sorting records with more than one field.

Our focus, in this paper is to extend the sorting algorithms
to handle records with multiple fields and arranged in different
layouts. To this end, we have chosen the algorithms which are
the fastest comparison and non-comparison based sorting al-
gorithms namely, sample sort and SRTS respectively. We also
include the GRS into the mix as it is already extended to sort
the records with multiple fields. We extend these algorithms to
handle records efficiently in ByField and ByRecord layouts
outlined in [2].

The remainder of this paper is organized as follows. In
Section II we describe features of the NVIDIA Tesla GPU that
affect program performance. In Section III, we describe three
popular layouts for records as well as two overall strategies to



handle the sort of multi-field records. Next three sections ??, V
and VI discuss the extension of sampleSort, SRTS and GRS
to handle records in different layouts. Section VII provides
extensive comparative results of sorting records in different
layouts using these sorting algorithms.

II. NVIDIA TESLA PERFORMANCE CHARACTERISTICS

GPUs operate under the master-slave computing model (see
[14] for e.g.) in which there is a host or master processor
to which are attached a collection of slave processors. A
possible configuration would have a GPU card attached to
the bus of a PC. The PC CPU would be the host or master
and the GPU processors would be the slaves. The CUDA
programming model requires the user to write a program that
runs on the host processor. At present, CUDA supports host
programs written in C and C++ only though there are plans to
expand the set of available languages [22]. The host program
may invoke kernels, which are C functions, that run on the
GPU slaves. A kernel may be instantiated in synchronous
(the CPU waits for the kernel to complete before proceeding
with other tasks) or asynchronous (the CPU continues with
other tasks following the spawning of a kernel) mode. A
kernel specifies the computation to be done by a thread. When
a kernel is invoked by the host program, the host program
specifies the number of threads that are to be created. Each
thread is assigned a unique ID and CUDA provides C-language
extensions to enable a kernel to determine which thread it is
executing. The host program groups threads into blocks, by
specifying a block size, at the time a kernel is invoked. Figure
2 shows the organization of threads used by CUDA.

Fig. 2: Cuda programming model [22]

The GPU schedules the threads so that a block of threads
runs on the cores of an SM. At any given time, an SM executes
the threads of a single block and the threads of a block can
execute only on a single SM. Once a block begins to execute
on an SM, that SM executes the block to completion. Each
SM schedules the threads in its assigned block in groups
of 32 threads called a warp. The partitioning into warps is
fairly intuitive with the first 32 threads forming the first warp,
the next 32 threads form the next warp, and so on. A half
warp is a group of 16 threads. The first 16 threads in a warp
form the first half warp for the warp and the remaining 32
threads form the second half warp. When an SM is ready to
execute the next instruction, it selects a warp that is ready
(i.e., its threads are not waiting for a memory transaction to
complete) and executes the next instruction of every thread
in the selected warp. Common instructions are executed in
parallel using the 8 SPs in the SM. Non-common instructions
are serialized. So, it is important, for performance, to avoid
thread divergence within a warp. Some of the other factors
important for performance are:

1) Since access to global memory is about an order of
magnitude more expensive than access to registers and
shared memory, data that are to be used several times
should be read once from global memory and stored in
registers or shared memory for reuse.

2) When the threads of a half-warp access global memory,
this access is accomplished via a series of memory
transactions. The number of memory transactions equals
the number of different 32-byte (64-byte, 128-byte, 128-
byte) memory segments that the words to be accessed
lie in when each thread accesses an 8-bit (16-bit, 32-
bit, 64-bit) word. Given the cost of a global memory
transaction, it pays to organize the computation so that
the number of global memory transactions made by each
half warp is minimized.

3) Shared memory is divided into 16 banks in round robin
fashion using words of size 32 bits. When the threads of
a half warp access shared memory, the access is accom-
plished as a series of 1 or more memory transactions.
Let S denoted the set of addresses to be accessed. Each
transaction is built by selecting one of the addresses in
S to define the broadcast word. All addresses in S that
are included in the broadcast word are removed from S.
Next, upto one address from each of the remaining banks
is removed from S. The set of removed addresses is
serviced by a single memory transaction. Since the user
has no way to specify the broadcast word, for maximum
parallelism, the computation should be organized so that,
at any given time, the threads in a half warp access
either words in different banks of shared memory or
they access the same word of shared memory.

4) Volkov et al. [18] have observed greater throughput
using operands in registers than operands in shared
memory. So, data that is to be used often should be
stored in registers rather than in shared memory.



5) Loop unrolling often improves performance. However,
the #pragma unroll statement unrolls loops only under
certain restrictive conditions. Manual loop unrolling by
replicating code and changing the loop stride can be
employed to overcome these limitations.

6) Arrays declared as register arrays get assigned to global
memory when the CUDA compiler is unable to deter-
mine at compile time what the value of an array index is.
This is typically the case when an array is indexed using
a loop variable. Manually unrolling the loop so that all
references to the array use indexes known at compile
time ensures that the register array is, in fact, stored in
registers.

III. MULTIFIELD RECORD LAYOUT AND SORTING

A record R is comprised of a key k and m other fields
f1, f2, · · · , fm. For simplicity, we assume that the key and
each other field occupies 32 bits. Let ki be the key of record
Ri and let fij , 1 ≤ j ≤ m be this record’s other fields.
With our simplifying assumption of uniform size fields, we
may view the n records to be sorted as a two-dimensional
array fieldsArray[][] with fieldsArray[i][0] = ki and
fieldsArray[i][j] = fij , 1 ≤ j ≤ m, 1 ≤ i ≤ n. When
this array is mapped to memory in column-major order, we
get the ByField layout of [2]. This layout was used also for the
AA-sort algorithm developed for the Cell Broadband Engine
in [8] and is essentially the same as that used by the GPU
radix sort algorithm of [15]. When the fields array is mapped
to memory in row-major order, we get the ByRecord layout
of [2]. A third layout, Hybrid, is employed in [12]. This is
a hybrid between the ByField and ByRecord layouts. The
keys are stored in an array and the remaining fields are stored
using the ByRecord layout. Essentially then, in the Hybrid
layout, we have two arrays. Each element of one array is a key
and each element of the other array is a structure that contains
all fields associated with an individual record. We observe that
when m < 2, the ByField and Hybrid layouts are identical.
When the sort begins with data in a particular layout format,
the result of the sort must also be in that layout format. Our
primary focus in this paper is the ByField layout. However,
to make an apples to apples comparison with SRTS [12],
which is the fastest known radix sort for integers and records
with a single 32-bit field, we make a simple extension of our
ByField algorithm to sort when the Hybrid layout is used.

At a high level, there are two very distinct approaches to sort
multifield records. In one, we construct a set of tuples (ki, i),
where ki is the key of the ith record. Then, these tuples are
sorted by extending a number sort algorithm so that whenever
the number sort algorithm moves a key, the extended version
moves a tuple. Once the tuples are sorted, the original records
are rearranged by copying records from the fieldsArray to
a new array placing the records into their sorted positions in
the new array or in-place using a cycle chasing algorithm as
described for a table sort in [7]. The second strategy is to
extend a number sort so as to move an entire record every time
its key is moved by the number sort. There are advantages and

disadvantages to which strategy should be employed to sort
records with multiple fields. First strategy seems to perform
much less work than the second during sorting as the satellite
data that needs to be moved with the key is only an integer
index while in the second strategy its the entire record. On
the flip side, the first strategy has a very costly random global
memory access phase at the end when the records are moved
to their sorted positions whereas the second strategy does not
have this phase.

IV. SAMPLE SORT [11] FOR SORTING RECORDS

Sample sort is a multi-way divide and conquer sorting
algorithm which performs better when the memory bandwidth
is an issue as the data transferred to and from the global
memory is less than a two-way approach. Serial version of
sample sort works by first choosing a set of splitters randomly
from the input data. The splitters are then sorted and arranged
in increasing order of their values. The input data set is divided
into buckets delimited by successive splitters. The elements in
a particular buckets have values which are bounded by the
guarding splitters. The sample sort is then called again on
each of these buckets. This process continues until the size of
the bucket becomes less than a certain threshold. At this point
a sorting algorithm is used to sort the small bucket. Sample
sort might be difficult to parallelize efficiently as the size of
the buckets assigned to the thread blocks can vary greatly
depending on the splitters chosen. However, this problem is
mitigated by choosing the splitters from a large sample of
random numbers.

The parallelized version of sample sort on the GPU is done
in multiple iterations. In each iteration we look at the elements
assigned and distribute them into k buckets. The distribution
consists of 4 kernel launches.

Phase 1: During this phase, the splitters are chosen.
First, a set of random samples are taken out of
the elements in the buckets. A set of splitters are
then chosen out from those random samples. Finally,
splitters are sorted using odd-even merge sort in
shared memory [?] and a Binary Search Tree is
created to facilitate the process of finding the bucket
for an element.
Phase 2: Each thread block is assigned a part of
the input data. Threads in a block load the Binary
Search Tree into shared memory and then calculate
the bucket indices for each element in the tile. At
the end threads store the number of elements in each
bucket as a k-entry histogram in the global memory.
Phase 3: Per block k-entry histograms are prefix-
summed to obtain the global offset for each bucket.
Phase 4: Each thread in this phase again calculates
the local indices and local offsets. Local offsets are
added to the global offsets from the previous phase
to get the final position of the element.

While sorting records following the second strategy outlined
in SectionIII the records need to be moved during the fourth
phase as in all other previous phases only the keys are required.



This distribution of the records from the large bucket to
small buckets is repeated multiple times till the size of the
bucket is below certain threshold. Records are correspondingly
moved during these iterations. Finally, quicksort is done on
the records when the bucket size if small. Records are also
moved during partitioning phase of the quicksort within a
small bucket. As there are potentially many times during the
execution of the sample sort records are moved first strategy of
doing a (key, index) pairs is better than the second strategy of
moving the entire record every time a key is being moved.
Fourth phase and the quick sort part of sample sort can
be extended to handle records in ByField and ByRecord
format. In ByField layout, while moving rec[i] to outRec[j],
threads can move the corresponding fields as shown in Figure 3

outKey[j] = key[i];

//Move the fields

for(p = 1; p <= m; p++) {
outRec[j][p] = rec[i][p];

}

Fig. 3: moving records in ByField layout

Similarly, in ByRecord (Hybrid) format fields can be
moved similarly by a thread while moving the keys. Figure 4
shows the code to move records assuming the records rec[i]
and outRec[j] are structures containing the values.

outKey[j] = key[i];

//Move the fields

outRec[j] = rec[i];

Fig. 4: moving records in ByRecord layout

We observe that in the ByField layout, each thread ac-
cesses the consecutive elements in the fields array which
results in generating a large global memory transaction while
moving records in ByRecord layout each threads reads a
record and writes the entire record into the global memory.
This reading and writing of records will be broken into global
memory transactions of 16 bytes given the compiler optimizes
the code. As the records are separated in memory this would
generate a set of smaller global memory transaction. We
employ a strategy of grouping the threads together so that
we can generate a larger memory transaction. Rather than a
single thread reading and writing the entire record, we employ
a group of threads to read and write the records into the global
memory cooperatively. Then this same group threads iterate to
read and write other records assigned to them co-operatively.
This ensures more larger global memory transactions. As an
example, lets say the record is of 64 bytes in length and as each
thread can read in 16 bytes of data using an int4 datatype,
we can group 4 threads together so that they can read the
entire record together. Then these thread group iterate over
to read other records until they are finished reading all the
records assigned to them. Lets say numThreads denotes the
number of threads in a block and each thread is supposed to

read in one record and put it into proper place in the output
array. Hence, we can assume that records from startOffset
to (startOffset+numThreads) are processed by this thread
block. For sake of clarity of the pseudocode we assume that
there is a map mapInToOut which determines the position
in the output array. In case of sample sort, it would be the
Binary Search tree constructed out of the splitters which would
determine the position of a particular record in the output
array. Figure 5 outlines the optimized version of moving
records using coalesced read and write.

// Determine the number of threads required to

// read the entire record

numThrdsInGrp = sizeof(Rec) / 16;

// Total number of records to be read = number of

// threads in the group

numItrs = numThrdsInGrp;

// Number of records read in a single iteration

//by all threads

nRecsPerItr = numThrds / numThrdsInGrp;

// Convert Record arrays to int4 arrays

recInt4 = (int4 *)rec; outRecInt4 = (int4 *)outRec;

// Determine the starting record and position in the

group for this thread

startRec = startOffset + threadId / numThrdsInGrp;

posInGrp = threadId % numThrdsInGrp;

for(i = 0; i < numItrs; i++)

{
outRecInt4[mapInOut(startRec) + posInGrp] =

recInt4[startRec + posInGrp];

startRec += numThrdsInGrp;

}

Fig. 5: optimized version of moving records in ByRecord
layout

V. SRTS [12] FOR SORTING RECORDS

SRTS employs an highly optimized version of the scan
kernel developed by Merrill and Grimshaw[?] to perform the
entire radix sort. As with the other radix sort strategies it
progressively radix sorts on 4 bits during the each phase.
Hence, SRTS requires 8 of these iterations to completely
sort a set of 32-bit integers. SRTS focuses on reducing the
total number of reads and writes to the global memory by
combining different functions done in separate kernels. Most
of the kernels in radix sort implementation are memory bound.
The technique introduced in SRTS increases the arithmetic
intensity of these memory bound operations and eliminates
the need for additional kernel for sorting as indicated in SDK
radix sort by citesat. SRTS further brings parity between
computation and memory access by only having a fixed
number of thread blocks in the GPU. Each thread loops
over to process the data in batches and hence the amount of
computation done per thread increases substantially. It consists
of three phases.



Phase 1: Bottom Level Reduction This phase consists
of two sub-phases. During the first phases, each
thread reads in its element from the input data and
extracts the value at the current digit place and
increases the digit counts correspondingly. The digit
counts are accumulated in local registers as there
are a possible of 16 different digit values for 4 bits.
The threads in the thread block loops over all tiles
assigned to the thread block and the digit counters are
accumulated in the local registers. After the last tile
of input data is processed, the threads within a block
perform a local reduction cooperatively to reduce the
sequence of counters and the result is written to the
global memory as a set of partial reductions.
Phase 2: Top Level Scan In this phase a single block
of threads operate over the partial reductions to find
out the global prefix sum. The scan is modified to
handle a concatenation of already partially reduced
sums.
Phase 3: Bottom Level Scan Lastly, the thread in a
block enact sorting of the elements by first reading
in the prefix sum calculated during the top-level scan
phase. It reads in the elements again and extracts the
bits corresponding to the current digit place. A local
parallel scan is done to find the local prefix sum.
These local offsets are seeded with the global prefix
sums calculated earlier to get the final position of the
element in the output. The input elements are first
scattered in shared memory using the local offsets to
put them in sorted order within the tile. Finally, those
elements are read in order from the shared memory
and written onto the global memory to ensure better
memory coherence generating larger global memory
transactions. The aggregate count of the digits are
carried over to the next tile of input processed by
this block of threads using local registers.

The final scatter of input elements happens during the
very last phase. Only keys of the records are required during
other phases. So, the fields of the record can also be moved
during the third phase while scattering the keys. We can use
the strategies outlined in Figure 3 and Figure 4 to scatter
the fields in ByField and ByRecord layouts respectively.
However, due to the way SRTS is implemented using generic
programming its hard to use the an optimized version of record
moving (Figure 5 in ByRecord format. The third phase of
record scattering occurs only 8 times for 32-bit keys during
the entire sorting process and does not depend on the number
of records being sorted. This indicates there is a possibility,
for SRTS, second strategy of moving records while sorting
might actually perform better than the first strategy of indirect
sorting followed by rearrangement.

VI. GRS [1] FOR SORTING RECORDS

GRS is developed specifically for sorting records [1] along
the lines of the SDK radix sort [15] but the focus is to reduce
the number of times a record is read or write into the global

memory. It employs an additional storage to store rank of the
elements and gets rid of the sorting phase proposed in SDK
sort [15]. The rank of an element is defined as the number
of elements having the same digit value before the element
in the input data tile. This helps to find the local offset of
records within a input data tile and helps to sort them in the
shared memory much like SRTS before writing them out to
the global memory. It also processes 4 bits per pass and hence
has 8 passes in total to sort records with 32-bit keys. The three
phases in each pass of GRS are:

Phase 1: Compute the histogram for for each tile as
well as the rank of each record in the tile. In this
phase, a block of 64 threads operate on a input tile
to cooperatively read the keys from global memory
to the shared memory. The global memory reads
are made coalesced by ensuring consecutive threads
access the consecutive keys in global memory. The
writing on the shared memory is performed with an
offset to avoid bank conflicts. Threads in read the
keys from the shared memory with an offset and
calculate the histogram and the rank using the digit
counters. The rank overwrites the keys in the shared
memory as we don’t need them after their ranks are
calculated. Finally, the histogram and the ranks are
written out to the global memory. As the rank can
not exceed the size of a tile which is typically set
to the 1024 records, a full integer is not required to
store the rank.
Phase 2: The prefix sums of the histograms of all
tiles are computed.
Phase 3: Lastly, in this phase the entire record is
first read from the global memory to the shared
memory. We then use the ranks, prefix-summed local
histograms to find out the local offset for each record
in the tile. We put the records in the shared memory
according to the offset so that we get a sorted tile
of records. The threads then read the records from
shared memory in order and use the global prefix
sum to put them in their final place in the output.

Much like SRTS, the final scatter of the records is done
in the last phase. As the last phase caters to a very simple
implementation, we can efficiently read and write records in
this phase. This simplicity entitles us to use the optimized
version for moving records ByField and ByRecord layouts
detailed in Figures 3 and 5 respectively. As with SRTS, we
only move records 8 number of times during the sorting of
records with 32-bit keys. Hence, GRS also has a fair chance
of outperforming the first strategy of sorting records by using
(key, index) pairs.

VII. EXPERIMENTAL RESULTS

VIII. CONCLUSION

REFERENCES

[1] Bandyopadhyay, S. and Sahni, S., GRS - GPU Radix Sort for Large
Multifield Records, International Conference on High Performance
Computing (HiPC), 2010.



[2] Bandyopadhyay, S. and Sahni, S., Sorting Large Records on a Cell
Broadband Engine, IEEE International Symposium on Computers and
Communications (ISCC), 2010.

[3] Blelloch, G.E., Vector models for data-parallel computing. Cambridge,
MA, USA: MIT Press, 1990.

[4] Cederman, D. and Tsigas, P., GPU-Quicksort: A Practical Quicksort
Algorithm for Graphics Processors, ACM Journal of Experimental
Algorithmics(JEA), 14, 4, 2009.

[5] Govindaraju, N., Gray, J., Kumar, R. and Manocha D., Gputerasort:
High performance graphics coprocessor sorting for large database man-
agement, ACM SIGMOD International Conference on Management of
Data, 2006.

[6] Greb, A. and Zachmann, G., GPU-ABiSort: optimal parallel sorting
on stream architectures, IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[7] Horowitz, E., Sahni, S., and Mehta, D., Fundamentals of data structures
in C++, Second Edition, Silicon Press, 2007.

[8] Inoue, H., Moriyama, T., Komatsu, H., and Nakatani, T., AA-sort:
A new parallel sorting algorithm for multi-core SIMD processors,
16th International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2007.

[9] Knuth, D., The Art of Computer Programming: Sorting and Searching,
Volume 3, Second Edition, Addison Wesley, 1998.

[10] Le Grand, S., Broad-phase collision detection with CUDA, GPU Gems
3, Addison-Wesley Professional, 2007.

[11] Leischner, N., Osipov, V. and Sanders P., GPU sample sort, IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2010.

[12] Merrill, D and Grimshaw A, Revisiting Sorting for GPGPU Stream
Architectures, University of Virginia, Department of Computer Science,
Technical Report CS2010-03, 2010.

[13] Lindholm, E., Nickolls, J., Oberman S. and Montrym J., NVIDIA Tesla:
A unified graphics and computing architecture, IEEE Micro, 28, 3955,
2008.

[14] Sahni, S., Scheduling master-slave multiprocessor systems, IEEE Trans.
on Computers, 45, 10, 1195-1199, 1996.

[15] Satish, N., Harris, M. and Garland, M., Designing Efficient Sorting
Algorithms for Manycore GPUs, IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2009.

[16] Sengupta, S., Harris, M., Zhang, Y. and Owens, J., D., Scan primitives
for GPU computing, Graphics Hardware 2007, 97-106, 2007.

[17] Sintorn, E. and Assarsson, U., Fast parallel GPU-sorting using a hybrid
algorithm, Journal of Parallel and Distributed Computing, 10, 1381-
1388, 2008.

[18] Volkov, V. and Demmel, J.W., Benchmarking GPUs to Tune Dense
Linear Algebra, ACM/IEEE conference on Supercomputing, 2008.

[19] Won, Y. and Sahni, S., Hypercube-to-host sorting, Jr. of Supercomputing,
3, 41-61, 1989.

[20] Ye, X., Fan, D., Lin, W., Yuan, N. and Ienne, P., High performance
comparison-based sorting algorithm on many-core GPUs, IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), 2010.

[21] CUDPP: CUDA Data-Parallel Primitives Library, http://www.gpgpu.
org/developer/cudpp/, 2009.

[22] NVIDIA CUDA Programming Guide, NVIDIA Corporation, version 3.0,
Feb 2010.


