OPERATIONS RESEARCH, Vol. 25, No. 6, November-December 1977

General Techniques for Combinatorial Approximation

SARTAJ SAHNI

Uuwiversily of Minnesota, Minneapolis, Minnesota

(Received June 1976; accepted April 1977)

This is a tutorial on general techniques for combinatorial approxima-
tion. In addition to covering known techniques, a new one is pre-
sented. These techniques generate fully polynomial time approxima-
tion schemes for a large number of NP-complete problems. Some of
the problems they apply to are: 0-1 knapsack, integer knapsack,
job sequencing with deadlines, minimizing weighted mean flow
times, and optimal SPT schedules. We also present experimental
results for the job sequencing with deadlines problem.

ANY COMBINATORIAL optimization problems are known to be

NP-complete (10, 15, 16, 19]. An NP-complete problem can be solved
in polynomial time iff all other NP-complete problems can also be solved in
polynomial time. The class of NP-complete problems includes such diffi-
cult problems as the traveling salesman, multicommodity netwc:k flows,
integer programming with bounded variables, set cover, and node cover
problems. There is no known polynomial time algorithm for any of these
problems. Moreover, mounting empirical evidence (i.e., the identification
of more and more NP-complete problems) suggests that it is very likely
that no polynomial time algorithms exist for any of these problems. This
realization has led many researchers to develop polynomial time approxi-
mation algorithms for some NP-complete optimization problems. An
approximation algorithm for an optimization problem is generally a heu-
ristic that attempts to obtain a solution whose value is “close” to the opti-
mal value. For many problems the data themselves are only an estimate.
The exact values may be slightly different from these estimates. In such
cases it is probably just as meaningful to find a solution whose value is
close to the optimal value as it is to find an optimal solution (as the optimal
solution may not remain so once the exact data values are known). For
the case of NP-complete problems, the study of approximation algorithms
derives an even stronger motivation from the fact that all known optimi-
zation algorithms for these problems require an exponential amount of
time (measured as a function of problem size) and the expectation that
these problems will never be solvable by polynomial time algorithms.

920

Techniques for Combinatorial Approximation 921

Even on the fastest computers, exponential time algorithms are feasible
only for relatively small problem sizes. It is better to be able to obtain an
approximately optimal solution than no solution at all.

Many researchers have presented heuristics that obtain reasonably good
solutions. Until recently the performance of these heuristies was measured
only through computational tests. The heuristic was programmed and the
solutions compared with known optimal solutions. Thus, Lin and Kernighan
[13] obtain computational results showing that for the test set used, their
local interchange heuristic for the traveling salesman problem obtained
solutions with value almost equal to the exact solution value. On the basis
of this test can we make any predictions about how the heuristic will per-
form on other problem instances? The answer is no. We can only hope
that it will do this well on other data sets, but we cannot be sure (especially
since the optimal solution values may not be known). A major thrust of
recent research on approximation algorithms has oeen the insistence on
performance guarantees for heuristics. This involves the establishment of
bounds on maximum difference between the value of an optimal solution
and the value of the solution generated by the heuristic. While performance
bounds were obtained as early as 1966 by Graham [4] for certain scheduling
heuristics, the development of the class of NP-complete problems has led
to a renewed interest in approximation methods that are guaranteed to get
solutions with value within some specified fraction of the optimal solution
value.

DEeriniTION 1. An algorithm will be said to be an e-approrximate algorithm
for a problem P iff it is the case that for every instance I of P, |F*(I)—F(I)|/
F*(I)<e F*(I)>0 s the value of an optimal solution to I, F(I) is the value
of the solution generated by the algorithm, and ¢ is some constant. For a maxi-
mization problem we require 0L e<1 and for a minimization problem e=0.

Many known polynomial time approximation algorithms are also e-ap-
proximation algorithms. Thus while it seems necessary to spend, in the
worst case, a nonpolynomial amount of time to obtain optimal solutions
to NP-complete problems, we can get to within an e factor of the optimal
for some such problems in polynomial time. For yet others [19] it is known
that the problem of obtaining e-approximate solutions is also NP-complete.

In some cases it is possible to obtain an approximation algorithm that
for every e>0 generates solutions that are e-approximate [7-9, 17, 18].
In the terminology of Garey and Johnson [2, 3] such an algorithm is called
an approximation scheme. Definitions 2—4 are due to Garey and Johnson.

DerintTiON 2. An approximation scheme for a problem P 1s an algorithm
that, given an instance I and a desired degree of accuracy e€>0, constructs a
problem solution with value F(I), such that, if F*(I)>0 s the value of an
optimal solution to I, then |F*(I)—F(I)|/F*(I)<e.

922 Sartaj Sahni

DerFinNITION 3. An approrimation scheme ts a polynomial time approrima-
tion scheme if for every fired ¢>0 it has a polynomial computing time. (Refer-
ences 7-9, 17, 18 present such schemes for some N P-complete problems.)

While the existence of polynomial time approximation schemes for NP-
complete problems may appear surprising, for some problems one can in
fact obtain approximation schemes with a computing time polynomial in
both the input size and 1/e. Such schemes are called fully polynomial time
approximation schemes.

DEerinITION 4. A fully polynomial time approrimation scheme is a poly-
nomial time approximation scheme whose computing time vs a polynomial in
both the input size and 1/e.

Garey and Johnson [2] present an annotated bibliography of research
on combinatorial approximation. Ibarra and Kim [8] present an
0(n/e4+nlogn) algorithm for the 0-1 knapsack problem. This algorithm
is a fully polynomial time approximation scheme. Sahni [18] and Horowitz
and Sahni [7] present 0(n’/¢) fully polynomial time approximation schemes
for several machine-scheduling problems. In Section 1 we present a tu-
torial on two of the techniques used in [7, 8, 18] to obtain these schemes.
These techniques are called rounding [8] and interval partitioning [18].
Both techniques are very general and applicable to a wide variety of opti-
mization problems. Next we present a third technique, called separation,
which is a modification of interval partitioning. This technique is as general
as the others. While it results in approximation schemes with the same
worst-case complexity as those obtained when interval partitioning is used,
intuition backed by experimental results indicates that it performs better
than interval partitioning. These three general methods for combinatorial
optimization have the added advantage that heuristics that could be
applied to the exact algorithm can also be used with the approximation
scheme. We shall see an example of this in Section 2. For many of the other
approximation algorithms that have been obtained for NP-complete prob-
lems this is not true.

In Section 2 we present implementation details and experimental results
comparing interval partitioning and separation as applied to the job
sequencing with deadlines problem. The approximation algorithms are
also compared with an exact algorithm for this problem. It will be seen
that, at least on the test data, the heuristics obtained solutions with values
much closer to the optimal than suggested by their worst-case analysis.

1. GENERAL APPROXIMATION TECHNIQUES

We state the three approximation techniques in terms of maximization
problems. The extension to minimization problems is immediate. We shall

Techniques for Combinatorial Approximation 923
assume the maximization problem to be of the form

Max iy Cils
n .
2o imaizish;, 1Sjsm (1)
r;=0o0rl, 15:=5n,

where ¢;, a;;20 for all z and j. Without loss of generality, we will assume
that a,;<b;, 1<i<n,and 1<j<m.

If 1=k=n, then the assignment r;=y;, 1=<7<k will be said to be a
feasible assignment iff there exists at least one feasible solution to (1)
with z;=y;, 1=7=<k. A completion of a feasible assignment z;=y;, 1 <1<k,
is any feasible solution to (1) with z;=y;, 1=i<k. Let r;=vy;, 1<i<k,
and zr,=z;, 1S7=<k, be two feasible assignments such that for at least one
Jy 1=j<k, y;#2, Let D cayi= o ciz:.. We shall say that Y1, -, Yr domai-
nates zi, - - -,z iff there exists a completion yi, * - -, ¥k, Yrs1, - -+ Yn such
that D 7 c,y; is greater than or equal to D1 c:z; for all completions
2, *++, 2, of 21, -+, 2. The approximation techniques to be discussed
will apply to those problems that can be formulated as (1) and for which
simple rules can be found to determine when one feasible assignment domi-
nates another. Such rules exist, for example, for many problems solvable
by dynamic programming [1, 14, 15].

One way to solve problems stated as above is to systematically generate
all feasible assignments starting from the null assignment. Let S represent
the set of all feasible assignments for zy, - - -, z;. Then S represents the
null assignment and S the set of all completions. The answer to our
problem is an assignment in S‘” that maximizes the objective function.
The solution approach is then to generate S“™ from S°, 1<i<n. If an
S® contains two feasible assignments yy, - - -, y; and 21, - -+, 2; such that
D cy= D ¢z, then use of the dominance rules enables us to discard that
assignment which is dominated. (In some cases the dominance rules may
permit the discarding of a feasible assignment even when »_c,y;# 2 ¢;2;.
This happens, for instance, in the knapsack problem [5, 15].) Following
the use of the dominance rules, it is the case that for each feasible assign-
ment in 8 Y i ¢z; is distinet. However, despite this, it is possible for
each S to contain twice as many feasible assignments as S . This
results in a worst-case computing time that is exponential in n. The ap-
proximation methods we are about to discuss will restrict the number of
distinet Y7 c;z; to be only a polynomial function of n. The error in-
troduced will be within some prespecified bound. The methods are com-
putationally efficient only when there exist efficient dominance rules to
eliminate all but one of a set of assignments that yield the same profit.

924 Sartaj Sahni

Rounding

The aim of rounding is to start from a problem instance I, formulated as
in (1), and to transform it to another problem instance I’ that is easier to
solve. This transformation is carried out in such a way that the optimal
solution value of I" is “close” to the optimal solution value of I. In par-
ticular, if we are provided with a bound ¢ on the fractional difference
between the exact and approximate solution values, then we require that
|(F*(I)—=F*(I"))/F*(I)|<¢, where F*(I) and F*(I') represent the opti-
mal solution values of 7 and I’, respectively. The transformation from 7
to I' is carried out in the following way: First we observe that the feasible
solutions to I are independent of the ¢;, 1<¢<n. Thus if I’ has the same
constraints as I and the ¢, differ from the ¢; by “small amounts” the
optimal solution to I will be a feasible solution to I'. In addition, the
solution value in I' will be close to that in I. For example, if the ¢;
in I have the values (¢, ¢, ¢35, ¢s) =,(1.1, 2.1, 1001.6, 1002.3), then if we
construct I’ with (¢t ¢, 03', ¢d)= (0, 0, 1000, 1000) it is easy to see that
the value of any solution in 7 is at most 7.1 more than the value of the
same solution in I'. This worst-case difference is achieved only when z;=1,
1=¢=<4 is a feasible solution for I (and hence also for I'). Since a;=<b;,
1<i<n and 1<j<m, it follows that F*(I)=1002.3 (as one feasible solu-
tion is zm=2=2=0 and 2=1). But F*(I)—F*(I')<7.1 and so
(F*(I)—=F*(I'))/F*(I)~0.007.

Solving I by using the procedure outlined above, the feasible assign-
ments in S could have the following distinct profit values: §© = {0}, 8¥
={0,1.1}, 8% = {0,1.1,2.1, 3.2}, 8¥ = {0, 1.1, 2.1, 3.2, 1001.6, 1002.7,
1003.7,1004.8}, S = {0,1.1,2.1, 3.2, 1001.6, 1002.3, 1002.7, 1003.4, 1003.7,
1004.4, 1004.8, 1005.5, 2003.9, 2005, 2006, 2007.1}. Thus, barring any
elimination of feasible assignments resulting from the domirance rules
or from any heuristic, the solution of I using the procedure outlined above
would require the computation of Y i |S®|=31 feasible assignments.
The feasible assignments for I’ have the following values: S®={0},
S ={o}, =10}, S¥={0, 1000}, S¥={0, 1000, 2000}. Note that) i~
|8| is only 8. Hence I’ can be solved in about one-fourth the time needed
for 1. An inaccuracy of at most 0.7 % is introduced.

Given the ¢/s and an ¢, what should thec /s be so that (F*(I)—F*(I'))/
F*(I)Seand X 7= |8®|Zp(n) for some polynomial in 7 and 1/€¢? Once
we can figure this out we will have a fully polynomial approximation scheme
for our problem since it is possible to go from S“™ to 8 in time pro-
portional to 0(|S“™|). (We shall see this in greater detail in the examples.)

Let LB be an estimate for F*(I) such that F*(I) = LB. Clearly, we may
assume LB=max;{c}. If D 1 |ci—c/|SeF*(I), then it is clear that
(F¥*(I)=F*(I'))/F*(I)Se. Define ¢/ =c;—rem(c;, (LBe)/n), where

Techniques for Combinatorial Approximation 925

rem(a, b) is the remainder of a/b, i.e., a—|a/blb (e.g., rem(7,6) =15 and
rem (2.2,1.3)=0.9)." Since rem (c;, LBe/n) <LBe/n, it follows that
3™ ei—e| <LBe<F*e. Hence, if the optimal solution to I is used as an
optimal solution for I, the fractional error is less than e. In order to de-
termine the time required to solve I’ exactly, it is useful to introduce
another problem I " with ¢,”, 1<7i<n as its objective function coefficients.
Define ¢;” =[(¢;n)/(LBe)], 1Si<n. It is easy to see that ¢"=(c’n)/
(LBe). Clearly, the S5 corresponding to the solutions of I” and I” will
have the same number of tuples. (p1,f4) is a tuple in an SY for
I iff ((pin)/(LBe), t1), is a tuple in the S for I”. Hence the time needed
to solve [’ is the same as that needed to solve I”. Since ¢;< LB, it follows
that ¢;” £[n/e]. Hence IS(i)|§1+ > iaici =14iln/e and so o 8%
<n+ Y2t dln/e=0(n*/e). Thus, if we can go from S“7 to S
in 0(|S“™]) time, then I” and hence I' can be solved in 0(n’/e) time.
Moreover, the solution for I " would be an e-approximate solution for 7
and we would thus have a fully polynomial time approximation scheme.
When using rounding, we will actually solve [” and use the resulting opti-
mal solution as the solution to I.
Example 1. The 0-1 knapsack problem is formulated as

max Y i Ciki
Z:;l wir; S M
r;=0o0r1, 151=n.

While solving this problem by successively generating 8@ 8. v, 8™,
the feasible assignments for S’ may be represented by tuples of the form
(p, t), where p= D iacir; and t= > i _ywjr;. One may easily verify the
validity of the following dominance rule [6, 15]: The assignment correspond-
ing to (p1, ti) dominates that corresponding to (p;, t) iff t4<t; and p1=ps.

Let us solve the following instance of the 0-1 knapsack problem: n=35,
M=1112 and (Cl, Ca, C3, C4, 05) = ('lL‘l, We, W3, Wy, w5) = { 1, 2, 10, 100, 1000} .
Since ¢;=w;, 1<1<5, the tuples (p,t) in S, 0=i¢<5 will have p=t.
Consequently, it is necessary to retain only one of the two coordinates p, t.
The S® obtained for this instance are: S¥={0}; SV ={0,1}; S¥=
{0,1,2,3;8%=(0,1, 2,3, 10, 11, 12, 13}; S¥ =10, 1, 2, 3, 10, 11, 12, 13,
100, 101, 102, 103, 110, 111, 112, 113}; $® ={0, 1, 2, 3, 10, 11, 12, 13, 100,
101, 102, 103, 110, 111, 112, 113, 1000, 1001, 1002, 1003, 1010, 1011, 1012,
1013, 1100, 1101, 1102, 1103, 1110, 1111, 1112}. The optimal solution has
value) cir;=1112.

Now let us use rounding on the above problem instance to find an ap-
proximate solution with value at most 10 % less than the optimal value. We
thus have e=1{,. Also, we know that F*(I) = LB=max {c;} =1000. The

1[z] is the largest integer not greater than z.

926 Sartaj Sahni

problem I’ to be solved is: n=>5, M=1112 (¢", ¢, &, ¢, ¢5") =
(0, 0,0, 5,50) and (wi, ws, ws, ws, ws) = (1, 2, 10, 100, 1000). Hence S
_ 80 g _ g®_ {(0,0)}; 8 ={(0,0), (5, 100)}; §9'= {(0,0), (5,100),
(50, 1000), (55, 1100)}.

The optimal solution is (x1, s, 3, 24, 25) = (0,0, 0, 1, 1). Its value in I’
is 55 and in the original problem 1100. The error (F*(I)—F(I))/F*(I) is
therefore 12/1112<0.011 <e. At this time we see that the solution may be
improved by setting either r;=1 or z.=1 or r;=1.

Rounding as described in its full generality results in 0(n’/¢) time ap-
proximation schemes. It is possible to specialize this technique to the specific
problem being solved. Thus Ibarra and Kim [8] obtain an 0(n/e’+n log n)
e-approximate algorithm for the 0-1 knapsack problem and an 0(n/)
e-approximate algorithm for the unrestricted nonnegative integer knapsack
problem. Both their algorithms use rounding.

Interval Partitioning

Unlike rounding, interval partitioning does not transform the original
problem instance into one that is easier to solve. Instead, an attempt is
made to solve the problem instance I by generating a restricted class of
the feasible assignments for S© 8Y ... 8™ Let P; be the maximum
> iycjr; amongst all feasible assignments generated for S, Then the
profit interval [0, P;] is divided into subintervals each of size P;e/n (except
possibly the last interval, which may be a little smaller). All feasible as-
signments in S® with D_i_; ¢;z; in the same subinterval are regarded as
having the same »_;_; ¢;z; and the dominance rules are used to discard
all but one of them. The S resulting from this elimination is used in the
generation of S“*. Since the number of subintervals for each S is at
most In/d+1, |S?|<in/d+1. Hence 2 71— |S”|=0(n"/¢). The error
introduced in each feasible assignment due to this elimination in S is
less than the subinterval length. This error may, how ever, propagate from
S up through S™ . However, the error is additive. If F(I) is the value
of the optimal generated by interval partltxomng and F*(I) is the value
of a true optimal, it follows that F*(I)—F(I)£(e) !y P;)/n. Since
P.<F*(I), it follows that (F*(I)—F(I))/F*(I) <e, as desired.

In many cases the algorithm may be speeded up by starting with a good
estimate, LB for F*(I) such that F*(I) =LB. The subinterval size is then
LBe¢/n rather than P,e/n. When a feasible assignment with value greater
than LB is discovered, the subinterval size can be chosen as described
above.

Ezxample 2. Consider the same instance of the 0-1 knapsack problem as
in Example 1. e=1/10 and F*= LB =1000. We can start with a subinterval
size of LBe/n=1000/50=20. Since all tuples (p, ¢) in S have p=t, only
p will be explicitly retained. The intervals are [0, 20), [40, 60), -- - etc.

Techniques for Combinatorial ‘Apprioximafion 927

Using interval partitioning we obtain: SO~ 8V=8"=8%=(0}; S

=10, 100} ; S =10, 100, 1000, 1100} .

The optimal generated by interval partltlonmg is (&y, oy, 3, I3, 75) =
(0,0,0,1,1) and the value F(J)=1100. (F*(I)—=F(I))/F* \I) =12/1112
<0.011 <e. Again, the solution value may be improved by using a heuristic
to change some of the z.’s from 0 to 1.

Separation

Assume that in solving a problem instance I, we have obtained an S
with feasible solutions having the following values of > et 0,39, 4.1,
7.8, 8.2, 11.9, 12.1. Further assume that the interval size Pe/n is 2. Then
the subintervals are [0, 2), [2, 4), [4, 6), [6, 8), [8, 10), [10, 12) and [12, 14).
Each value above falls in a different subinterval and so no feasible assign-
ments are eliminated. However, there are three pairs of assignments with
values within Pe/n. If the dominance rules are used for each pair, only 4
assignments will remain. The error introduced is at most P.e/n. More
formally, let ao, a1, as, * - -, a, be the distinet values of > i ez in S“)
Let us assume ao<ay<ay- - - <a,. We will construct a new set J from S“
by making a left-to-right scan and retaining a tuple only if its value ex-
ceeds the value of the last tuple in J by more than P;e/n. This is described
by the following algorithm:

J«assignment corresponding to ao; XPeag
for j—1 to r do

if a;>XP+P.e/n then

[put assignment corresponding to a; into J, XP«a;l
end.

The analysis for this strategy is the same as that for interval partitioning.
The same comments regarding the use of a good estimate for F*(I) hold
here, too.

Intuitively, one may expect separation always to work better than in-
terval partitioning. The following example illustrates that this need not
be the case. However, empirical studies with one problem (see Section 2)
indicate that interval partitioning is inferior in practice.

Ezample 3. Using separation on the data of Example 1 yields the same
S as obtained using interval partitioning. We have already seen an in-
stance where separation performs better than interval partitioning. Now
we shall see an example where interval partitioning does better than
separation. Assume that the subinterval size LBe/n is 2. Then the intervals
are [0,2), [2,4), [4,6)--- etc. Assume further that (ci, ¢, c3 05 ¢5) =
(3,1,5.1,5.1,5.1). Then, following the use of interval partitioning, we
hamre: 8= {0}; SY=10,3; SP={0,3,4}; §9={0,3,4,81}; S¥=
{0, 3, 4, 8.1,13.2}; S¥=10,3,4,8.1,13.2,18.3}.

928 Sartaj Sahni

Using separation with LBe/n=2 we have: S@={0}; SV ={0, 3}; 8® =
10,3); S¥=10, 3, 5.1, 8.1}; S¥' =10, 3,5.1,8.1,10.2,13.2}; ¥ ={0, 3, 5.1,
8.1,10.2, 13.2, 15.3, 18.3}.

The three methods for obtaining fully polynomial time approximation
schemes can be applied to a wide variety of problems. Some of these
problems are 0-1 knapsack problem (8]; integer knapsack problem [8];
job sequencing with deadlines [18]; minimizing weighted miean finish time
[7, 18]; finding an optimal SPT schedule [18]; and finding minimum finish
time schedules on identical, uniform and nonidentical machines (7, 18].

2. JOB SEQUENCING WITH DEADLINES

The problem here is to sequence a set of n jobs onto one machine. Each
job 7 has associated with it a processing time requirement {;, a deadline d;,
and a profit p; which is earned only if the processing of job ¢ is completed
by d.. If a job is not processed by its deadline, no profit is earned. The ob-
jective is to find a schedule (i.e., permutation of the n jobs) that maximizes
the profit.

Any feasible solution may be represented as a tuple (p, o), where ¢ is
a permutation specifying the schedule and p the profit. It is clear that all
jobs that are not completed by their deadlines might as well be processed
after all jobs that are. Furthermore, those jobs not completed by their
deadlines can be processed in any order. Hence, it is sufficient if o specifies
only those jobs that are to be completed by their deadlines and the re-
quired order for them. It is well-known [12] that if J represents a subset of
jobs that can be completed by their deadlines, one possible permutation
is to process jobs in order of nondecreasing deadlines. Hence, if we assume
dip1=d;, 15i<n, the job sequencing with deadlines problem may be
formulated as

max Z?=1 Pils
Y tai=d;, 15550
z;=0o0r1, 1Z7=n.

In solving this problem, a feasible assignment z;=y;, 1 Si¢<k will be repre-
sented as a tuple (p,t), where p= > X ipwysand t= > % ity The values
y: can be reconstructed from the sets S¥ 0gign.

The dominance rule is fairly straightforward: (pi, &) dominates (ps, &)
iﬁ' tl_S_tz and plé D2.

Our first pass at obtaining an exact algorithm would result in the fol-
lowing:

1. 89—{(0,0)} //null assignment//
2. for 71 to n do _
3. Generate S from S“ using the dominance rules to eliminate tuples

Techniques for Combinatorial Approximation 929

"

end

optimal solution value corresponds to tuple in S with maximum p
6. an optimal schedule can be found using a backward search starting
from S™.

&

In the appendix we will fill in the details of the algorithm and show that
when the p/’s, t.’s and d,’s are integer, its worst-case computing time is
O(min {2", n Y j=1pj, n) j=1t;, 2 i-1d;). The complete algorithm of the
appendix will be referred to as JSD.

The first thing we can do to improve the performance of JSD is introduce
heuristics that will tend to reduce |S*”|. A possible heuristic is:

Heuristic. Let LB be a lower bound on the value of an optimal solution.
Let PLEFT= D 711 p;. Then all tuples in S with profit value less than
LB-PLEFT can be discarded, as these tuples cannot lead to a tuple in S
with profit value greater than or equal to LB.

The power of this heuristic clearly lies in our ability to get a good esti-
mate for LB. One way to estimate LB dynamically in JSD is to consider
the tuple (p, t) with the largest p generated so far. We may use LB=p.
A Dbetter estimate may be obtained by considering (p, t) as before and then
adding to this some of the tasks not yet considered. The appendix describes
how this heuristic may be introduced in JSD without introducing excessive
overhead. The resulting algorithm is called E. Slight modifications to
algorithm E result in its transformation into a fully polynomial time ap-
proximation scheme. The appendix describes the necessary modifications
for both interval partitioning and separation. The resulting algorithms are
called I and S, respectively, and both have a computing time of 0(n*/e).

The algorithms E, I, and S were programmed in FORTRAN and run
on a CDC CYBER 74. The programs were compared over a variety of
data. Algorithms I and S were run with e=0.1. Three data sets were used:

Data Set A: random profits p;e[1, 100], {;=p; and d,;= o Ju N

Data Set B: random p.e[l, 100]; t;=p, and random delt;, t;+25n].

Data Set C: random pe(l, 100]; random ¢;e[1, 100] and random delt,
t,~+25n].

The program had a capacity to solve all problems generating no more
than 9000 tuples (i.e., D r=o|S™”|<9000). For each data set an attempt
was made to run 10 problems each of size 5, 15, 25, 35, 45, - - - . Tables
I-III give the average times and space requirements for the three al-
gorithms. The standard deviation in the observed space and time require-
ments is also given. The first thing to note is that the time and space re-
quirements for algorithm E do not grow as rapidly as indicated by the
worst-case analysis. (This of course does not mean that they will not
grow in such a manner for some other data set.) Secondly, the standard
deviation in time and space requirements even within a given data set is
so large that it does not make sense to talk about a “typical” computing

930 Sartaj Sahni

time for the three algorithms. For a fixed n the time and space required
by each of the algorithms is highly dependent on the specific values of the
pi, ti and d;. For all three data sets the approximation algorithms outper-

TABLE I
Dara SET A
Time (msec) per algorithm: Space (no. of tuples) per algorithm:
N E I N E I S
Mean | STD | Mean | STD | Mean S‘TD Mean | STD | Mean | STD | Mean | STD
5 1.6/ 0.66] 2.6] 0.49, 2.2 | 0.98| 22.1 7.2 20.9! 6.07, 19.9| 5.8
15 51.3| 7.8 | 33.8] 4.31| 25.6 | 3.72|{1350.1/208.49| 635.1| 80.81| 557.2| 84.31
25 200.6/13.3 |109.2| 6.68| 85.5 | 4.92|5746.1/423.06(2122.5(129.65/1912.5/115.49
35 wox ** 1231.6/30.73|186.7 (26.56| ** b 4652 0/678.65/4217.3/640.59
45 ¥y Lo g ** 1331.00[34.71) ** *"‘ | ** 17560.9/863.13

(**) Problem generated more than 9000 tuples.

formed the exact one on both space and time for n=15. In the case of data
set A the difference is most marked. On all the problems generated, al-
gorithm S generated fewer tuples than did algorithm I (thus lending sup-
port to our intuitive evaluation of the separation technique). Algorithm S

TABLE II
Dara SeT B
Time (msec) per algorithm: Space (no. of tuples) per algorithm:
N E I S E 1 S

Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean STD Mean STD

0.49| 23.0f 9.27| 21.8] 7.68 21.0 7.39
4.15| 819.9/267.95| 391.3| 104.18| 332.7 | 90.82
11.07/2776.1/638.57/1073.8| 242.96) 955.9 | 245.6

5 2.3/ 0.90] 2.4/ 0.49, 2.6
4
R
.3|21.34| ** ** 12806.6| 489.31/2634.8 | 505.74
o
.0

15 | 34.0 9.98] 23.2 5.11
25 1107.5123.75| 59.8/12.46
35 ** | ¥ 1149.4122.48|1
45 ** | %k 1244.133.8412
55 ** | % 1306.4/67.292

28.24| ** **14522.5| 734.99/4024.1 | 701.74
55.91 ** **15678.4/1372.94\5345.7 {1282.97

(3 l\J)&r—‘
mgwoo\xm

(**) Generated more than 9000 tuples.

also required less time_than algorithm I except on problems from data
set C with n=65. N

Even though algorithms / and S were run with e=0.1, the observed
differences were much less than this. Of the 140 problems for which the
optimal solution value was obtained by algorithm £, I generated 90 opti-
mal solutions while S generated 85 optimal solutions. The breakdown by
data sets is summarized in Table IV.

Techniques for Combinatorial Approximation 931

Finally, it should be mentioned that Kohler [11] has also applied interval
partitioning to the job sequencing with deadlines problems. He uses

TABLE III
Data Ser C
Time (msec per) algorithm: " Space (no. of tuples) per algorithm:
N E I s E 1 ! s
Mean | STD | Mean | STD | Mean | STD | Mean STD Mean STD Mean i STD
5 2.1/ 0.94 2.00 0.77, 2.1/ 1.3 11.4/ 5.04 10.9 5.07] 10.7 | 4.92
15 9.2/ 2.75 7.7 11.35 9.1/ 2.62] 84.2 30.5| 76.0, 22.28 71.9 18.61
25123.7/ 5.1 |21.1] 4.06 24.8) 5.53] 293.9] 83.21| 268.8/ 63.79| 260.5 | 61.45
35 | 57.6/14.47) 45.3 10.82 55.1;11.5 784.5 246.01! 622.9 194.36! 570.9 | 181.04
45 | 88.8/123.06| 69.4 120.9 | 71.4/19.44(1177.6/ 509.71| 964.4) 392.2 | 916.80 387.91
55 1151.5/35.34(121.1 129.53|137.0137.17|2326.1, 694.43(1836.0 358.83/1734.7 548.01
65 |238.2/50.72|172.6 |28.78 192.431.643805.61083.81;2720.0‘ 572.4 2574.7 | 536.85
75 1305.1/41.93(257.2 37.84/222.0,30.69/6011.6/1006.02/4089.2, 733.72§3885.2 697.67
85 | ** ** 1308.7 55.28/266.1/44.99| ** ’ bk 4832.531003‘65{4557.1 1005.68

(**) Generated more than 9000 tuples.

heuristics similar to the ones discussed here and also provides a comparison
on the performance of the exact algorithm E with and without the heuristics.
Using different test data he concludes that algorithm I does not represent
a significant improvement over algorithm E. A close look at his results

TABLE IV
RELATIVE PERFORMANCE OF I AND S
Data set
Performance ‘ n
A j B ‘ c
Total number of problems solved by algorithm | 80 L 30 ! 30
E | !
Optimal solutions by I 54 |20 |16
Optimal solutions by 8 53 | 18 | 14
Average fractional error in nonoptimal solutions 0.0025 | 0.0047 [0.0040
by I i
Average fractional error in nonoptimal solutions 0.0024 | 0.0047 | 0.0040
by S | !
No. of I solutions better than S 3 i7 J[9
No. of S solutions better than I 1 P7 { 6

indicates that the number of tuples generated by both £ and I were almost
the same and so, for the test data used, algorithm £ actually had only a
0(n®) time.

On the basis of our results, Kohler’s results, and the theoretical analysis,

932 Sartaj Sahni

we can conclude that for some problem instances I and S will have a run
time almost the same as £ and for other instances 7 and S will outperform
E. In general, we expect S to perform better than 7.

APPENDIX

We describe the details of the implementations of algorithms JSD, K| T,
and S discussed in Section 2. The algorithms are described in the algo-
rithmic language SPARKS [6] rather than the language in which they
were programmed, FORTRAN, since it is much easier to read and under-
stand a SPARKS algorithm than a FORTRAN program. Coding a
SPARKS algorithm as a FORTRAN program is a trivial task.

Algorithm JSD is arrived at by building upon the first pass of the exact
algorithm discussed in Section 2. Let us concentrate on lines 2-5. Line 6
of the first pass algorithm is fairly straightforward and simply involves
the use of binary search. This will become apparent once we discuss the
implementation of lines 2-5. The sets S are of varying size. Each element
is a pair of numbers (p,t). To use space efficiently, we represent all the
S in two arrays P and T' with F; pointing to the start of 8. To be able
to implement the domination rule efficiently, each S is generated in
such a way that if (py, 4) and (p,, t,) are two tuples in S and #, <t, then
(p1, t1) precedes (ps,t:). (Note that because of the domination rules it
must be that p;<p,, as otherwise (ps, t2) gets eliminated.) In generating
S from S“ we note that when z;=0, all the tuples in S“ ™ represent
feasible assignments. When ;=1 the feasible assignments are obtained
from the tuples of S“ ™ as follows: If (p,t) is a tuple in gty
then (p+p., t+t:) represents a feasible assignment iff {+¢;=d;. Thus one
way to genorate S from 8" would be to first generate the set J=
{(p+p1, t+t)|(p, t)eS“™ and t+t,<d;} and then to combine the tuples
in 8" and J together, obtaining 8. During this step the dominance
rule can be used to ensure that the tuples in S have distinct p’s and ¢’s.
Our implementation of this process generates the elements of J in parallel
with the generation of S‘”. As each new element of J is generated, the
domination rules is used to merge this term together with all remaining
terms in §“ with a smaller or equal time coordinate into S*. Algorithm
JSD uses a subalgorithm PARTS, which carries out the function of line
6 of our first pass algorithm. In addition, the dominance rule is used in
parallel with the generation of S®. The inputs to the algorithm are:
n- - -number of jobs; p- - - p; is profit for job ¢; ¢- - -¢; is time needed by job z;
d- - -d; is deadline for job 7: d;=d;_;, 2=<1=n. The other variables used in
JSD have the following meaning: (P;, T;)- - -a tuple in one of the S'”’s;
F;---index of first tuple in 8, (P, T;), Fi<j<F. are the tuples in
S XP...profit value of last tuple put in S; k- - -index of next tuple
from S“™ to be merged into S”; next- - -index of next tuple to be gene-

Techniques for Combinatorial Approximation 933

Q(:—1) |

rated for S“; Ipoint- - -index of first tuple in S‘"; hpoint- - -index of

last tuple in 86

Line procedure JSD(n, p, {, d)
1 Fg—1; Py—0; T1<0 //initialize S©®//
2 Ipoint«hpoint«1 //start and end of S©®//
3 next—2; F—2
4 for 71 to n do //compute S®//
5 k—lpoint; XP——1
6 u—largest m, lpoint <m = hpoint, such that T,+{,=d.
7 for j—Ipoint to u do //generate J and merge//
8 (pl: t’)‘_—(Pf—’—pﬁy T4‘+ll)
//merge in from SG-1 using dominance rules//
9 while k=hpoint and 7:<?!" do
10 if P> XP then [Ppext—XP— Py
i1 Tnext‘—Tk
12 next«—next41]
13 ke—k+1
14 end
15 if k<hpoint and Ti;=t' then [p’—max {p’, P}
16 ke—k—+1]
17 if p'>XP then [Phexi—XPep’
18 Tnext"“z’
19 nexte—next-1]
20 end
//merge in remaining terms from S¢-b//
21 j<least m, k<m=hpoint, such that P,,>XP
22 for l«j to hpoint do
23 Prext—Pi; Thexte—T1; nexte—next+1
24 end
//initialize for S+D
25 Ipoint«hpoint+1; hpoint«—next—1; Fi+1lnext
26 end
27 call PARTS //Phpoint is optimal solution value//
28 end JSD.

Analysis of JSD

Lines 1-3 take 0(1) time. For each iteration of the loop of lines 4-26,
line 5 takes 0(1) and line 6 O(log |S“™|) if binary search is used. The
time for lines 7-24 is 0(|S“™"|). This follows from the observation that
in each iteration of the loops of lines 9-14 and 22-24, k increases by 1.
The total increment in & is [S“™"|. The number of iterations of the loop of
lines 7-20 is (w—Ipoint-+1), which is no more than |S“™”|. Line 21 takes
no more than log (|S“"|) time. Line 25 takes 0(1) time. Hence each
iteration of the loop of lines 4-26 requires 0(|S“|) time. The total time
for this loop is therefore 0(Y [S“"|). The procedure PARTS can use
binary search on S, S ... 8 to find the optimal solution. Hence
the time for this is 0(>~ |log 8“7"|). The total time for JSD is therefore
0(> [S"V]). In the worst case |S?|=2|S""|. With |S"®| =1, this gives

934 Sartaj Sahni

S |8 P DR 2°=2"—1. The worst-case time for JSD is therefore
0(2"). In case all the p;, {; and d; are integer then, as a consequence of the
dominance rules, it follows that |[S™|<min {D i Diy Dgmati, di}+1.
In this case we obtain 0(min {2", nY_ 7 p;, nYy rat; Ot di) as the
time bound for JSD. The space bound is the same as the time bound. Algo-
rithm JSD can be speeded up slightly by ecarrying out the iteration of line 4
only for 1 £7<n. Then the index from line 6 will give an optimal solution.

The heuristic discussed in Section 2 may be introduced into algorithm
JSD by introducing the following code after line 4:

4.1 (P, t)(_(phpoint, thpoint)

4.2 for j—i to n do

4.3 if t+t;=d; then [t—t+1i;; p—p+p,]
4.4 end.

For some data sets it is possible that p as generated above is less than
the previous estimate of the lower bound. Hence, if LB is the previous lower
bound used, then the new lower bound to use becomes:

4.5 LB« max {LB, p}.

Even though this heuristic may seem simple, experimental results will
show it to be very effective. The remaining changes needed in JSD to
implement the heuristic are:

(i) Add line 3.1 PLEFT«— > 7 p:;
(ii) Add line 4.6 PLEFT—PLEFT—p;;
(iii) Replace line 5 with

5 keleast m, lpoint<m =<hpoint such that PLEFT+P,>LB;
5.1 XP—P,—1.

It is easy to see that the inclusion of the heuristic to JSD does not alter
the worst-case computing time (exeépt by a constant factor). We call the
resulting exact algorithm, algorithm E. In order to introduce the interval
partitioning scheme into algorithm E, we note that the computation for
LB will have to be altered slightly. As a result of discarding some tuples
in going from 8“7 to S, it is likely that the LB as computed for S
may be more than the best obtainable from S’. If DEL is the interval
size used, then the optimal obtainable from S is at least LB-DEL.
Hence line 4.5 should be changed to

4.5 LBemax {LB-DEL, p}.

The interval size is readily computed as LBe/n. By making appropriate
changes to lines 10, 17-19 and 23, the interval partitioning scheme can be
carried out in parallel with the generation of S from S“ . The resulting
computing time is 0(n’/¢). Call this algorithm, algorithm I.

Techniques for Combinatorial Approximation 935

The approximation algorithm incorporating the separation scheme is
obtained by computing DEL as above and by changing line 4.5 of al-
gorithm ¥ as described above.

In addition, the following changes are made:

(1) Line 10—replace conditional by P, >XP+DEL;
(ii) Lines 17-19 are executed only if p’> XP+DEL;
(iii) Line 21—replace XP by XP+DEL;

(iv) Replace line 23 by
if P;>XP+DEL then [P« XP—P,
Toext—T
nexte—next—+1].

The computing time for the resulting algorithm is 0(n’/e). Call this
algorithm, algorithm 8.

It should be clear from our discussion on the implementation of the two
approximation methods that the overhead involved is small. This is borne
out by the experimental results presented in Section 2.

ACKNOWLEDGMENT

This research was supported in part by NSF grants DCR 74-10081
and MCS 76-21024.

REFERENCES

1. R. BeLumMan aNp S. Drevrus, Applied Dynamic Programming, Princeton
University Press, Princeton, N.J., 1962.

2. M. Garey aND D. Jornson, “Approximation Algorithms for Combinatorial
Problems: An Annotated Bibliography,” in Algorithms and Complexity,
J. Traub (Ed.), pp. 41-52, Academic Press, New York, 1976.

3. M. Garey anD D. JomNsoN, “Approximation Algorithms for Combinatorial
Problems: Prospects and Limitations,” Lecture by D. Johnson presented
at the Symposium on Algorithms and Complexity, Carnegie Mellon Institute,
Pittsburgh, 1976.

. R. Granam, “Bounds for Certain Multiprocessing Anomalies,” Bell Systems
Tech. J. 4, 1563-1581 (1966).

5. E. Horowrrz aND S. Sanni, “Computing Partitions with Applications to the

Knapsack Problem,” J. Assoc. Comput. Machinery 21, 277-292 (1974).

6. E. Horowirz AND S. SAHNI, Fundamentals of Data Structures, Computer
Science Press, Woodland Hills, Calif., 1976.

7. E. Horowrrz aAND S. Sann1, “Exact and Approximate Algorithms for Schedul-
ing Nonidentical Processors,” J. Assoc. Comput. Machinery 23, 317-327
(1976).

8. 0. Isarra axp C. Kiv, “Fast Approximation Algorithms for the Knapsack
and Sum of Subsets Problems,” J. Assoc. Comput. Machinery 22, 463-468
(1975).

9. D. Jomnnson, “Approximation Algorithms for Combinatorial Problems,” J.
Comput. Syst. Sct. 9, 256-278 (1974).

M

936 Sartaj Sahni

10. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of
Computer Computations, pp. 85-103, R. E. Miller and J. W. Thatcher (Eds.),
Plenum Press, New York, 1972.

11. W. KoHLER, “Computational Experience with Efficient Exact and Approximate
Algorithms for an NP-Complete Scheduling Problem,” Technical Report
ECE-CS-75-13, University of Massachusetts, Amherst, December 1975.

12. E. LawLER aND J. Moorg, “A Functional Equation and Its Application to
Resource Allocation and Sequencing Problems,” Management Sci. 16, 85—
103 (1969).

13. S. Lixv axp B. KernigHAN, “An Effective Heuristic Algorithm for the Travel-
ling Salesman Problem,” Opns. Res. 21, 498-516 (1973).

14. G. NEMHAUSER, Introduction to Dynamic Programming, John Wiley & Sons,
New York, 1966.

15. G. NEMHAUSER AND Z. ULLmaN, “Discrete Dynamic Programming and Capi-
tal Allocation,” Management Sci. 15, 494-505 (1969).

16. S. Sanni, “Computationally Related Problems,” SIAJM J. Compuling 3,
277-292 (1974).

17. S. Sann1, “Approximate Algorithms for the 0/1 Knapsack Problem,” J. Assoc.
Comput. Machinery 22, 115-124 (1975).

18. S. Saunt, “Algorithms for Scheduling Independent Tasks,” J. Assoc. Compudt.
Machinery 23, 114-127 (1976).

19. S. Saunt axp T. GonzaLez, “P-Complete Approximation Problems,” J. Assoc.
Comput. Machinery 23, 555-565 (1976).

