On Computing the Exact Determinant of Matrices with Poly-

nomial Entries

E. HOROWITZ
University of Southern California, Los Angeles, California
AND

S. SAHNI

Universily of Minnesola, Minneapolis, Minnesola

apsTRACT. The problem of computing the determinant of a matrix of polynomials is considered.
Four algorithms are compared: expansion by minors, Gaussian elimination over the integers, a
method based on evaluation and interpolation, and a procedure which computes the characteristic
polynomial of the matrix. Each method is analyzed with respect to its computing time and storage
requirements using several models for polynomial growth. First, the asymptotic time and storage
is developed for each method within each model. In addition to these asymptotic results, the analysis
is done exactly for certain especially small, yet practical and important cases. Then the results of
empirical studies are given which support conclusions about which of the methods will work best
within an actual computing environment.

CR CATEGORIES: 5.14, 5.25

KEY WORDS AND PHRASES: determinants, matrix of polynomials, Gaussian elimination, expansion
by minors, characteristic polynomial

1. Introduction

Though much work has been done on the problem of computing solutions of linear systems
with rational number entries, far less has been done on matrices with polynomial entries.
Yet such problems arise in many areas of scientific study. Perhaps the first such applica-
tion is concerned with the computation of Jacobians, as for example in [11, pp. 113, 420].
Other applications are connected with the computation of generating functions for flow
graphs; see [13]. In another area such matrices arose while solving a singular perturbation
problem for a linear ordinary differential equation with an interior turning point; see [6].
Our own interest in this problem came from a desire to create a computer system which
solves mathematical problems symbolically. In such computer systems, the solution of
linear equations with symbolic polynomial entries arises repeatedly. As an aid to the
mathematician, the object is to produce successive solutions for matrices of varying size.
The hope is that the collection of these results will yield insights as to the makeup of the

Copyright © 1975, Association for Computing Machinery, Inc. General permission to republish, but
not for profit, all or part of this material is granted provided that ACM’s copyright notice is given
and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

This research was supported by the National Science Foundation under Grant GJ-33169 and GJ-
44207.

Authors’ addresses: E. Horowitz, Computer Science Program, University of Southern California,
Los Apgeles, CA 90007; S. Sahni, Department of Computer, Information, and Control Sciences,
University of Minnesota, Minneapolis, MN 55455.

Journal of the Association for Computing Machinery, Vol. 22, No. 1, January 1975, pp. 38-50.

On Computing the Exact Determinant of Matrices with Polynomial Entries 39

general formula. It may, in fact, be possible to produce the desired result solely by com-
puter, but as we shall see later present speeds imply that only small problems can be
solved. Thus the major advantage of such software is that it produces the exact solution.
For notoriously ill-conditioned matrices such as the generalized Hilbert and Vander-
monde, exact symbolic solution of linear systems provides a useful adjunct to conven-
tional numerical techniques. In this paper we will specifically consider the problem of
exact determinant calculation for matrices of polynomials.

Considerable work has already been done on the exact solution of linear systems with
numerical entries. Bareiss [2] covers the background of early work by Borosh and Fraenkel
and also the work by Takahasi and Ishibashi, More recent work by Howell and Gregory
[10], Cabay [4], and McClellan [14] have tended to recommend the use of congruence (or
modular) arithmetic for obtaining exact solutions instead of the more commonly used
Gaussian elimination over an integral domain; see [1]. Bareiss [2] has compared a two-
step elimination algorithm with a conventional multiprecision arithmetic routine versus
a congruence technique. He concludes that the former is more efficient than the latter.

Only Bareiss [2] and McClellan [14] have attempted to extend their results to poly-
nomial entries. Bareiss derives degree bounds for the resulting polynomials whereas
MecClellan actually derives cost functions. Both conclude that the congruence technique
is preferable, though neither has presented an operation count for competing methods. In
that sense this paper is a continuation of this work, since we give both asymptotic formu-
las and experimental data on several determinant calculating methods.

The conclusion that congruence methods, or what we shall refer to as evaluation-inter-
polation methods, are best for polynomial matrices is predicated on the assumption that
all polynomials which arise in the course of the computations are completely dense (i.e.
all possible terms occur). This assumption allows for the full exploitation of the evalua-
tion-interpolation method, but it is misleading in the following sense: many problems in
actual practice are not dense, e.g. the Vandermonde matrix, where each entry is a function
of n variables but has only one term. Later on we will see why the evaluation-interpola-
tion methods work poorly in such circumstances. A second difficulty is the question of the
asymptotic analysis. Current computers cannot solve even a 6 X 6 system with dense
polynomials in more than one variable. Thus asymptotic formulas may be misleading
when we are concerned with only very small values of the parameters. A further factor is
that different algorithms will behave radically different on different classes of poly-
nomials. Therefore, in this paper we have attempted to model several classes of poly-
nomials which do arise in practice. Then within each model we have analyzed the per-
formance factors of several important algorithms, carefully preserving the constants so
that we may estimate behavior on small problems. Finally, a summary of extensive em-
pirical studies is given in order to assess the global performance of the methods within
the confines of the practical world of computation.

2. The Algorithms

In this section we describe and analyze four algorithms for computing the determinant
of a matrix. All these methods have been known before, but their use on matrices with
polynomials of different types has been studied only partially. Although on the surface
these methods look disparate, they are in fact all related. Their relationships have been
brought out by Bareiss and we refer any interested reader to [2].

For all four algorithms, the input is an n X n matrix M whose elements are polynomials
in the variables 2; - - - , ,. The output is an r-variable polynomial R(x;, ---, %,) such
that B = det(M). The coefficients may be fixed or floating-point, single-precision num-
bers, or elements from the finite field, GF(p), where p is a single-precision odd prime. For
the case of fixed or floating-point coefficients there has been no attempt to do an error
analysis since we are primarily interested in exact calculations. However, the asymptotic
formulas obtained in Section 3 will apply to all polynomials whose coefficients are such

40 E. HOROWITZ AND S. SAHNI

that the time to perform any arithmetic operation is bounded. No attempt has been made
to judge the numerical accuracy of these methods.

Recent work studying exact algorithms for polynomial computations has shown that
where multiple precision integer coefficients can oceur, the best strategy is to first reduce
the input modulo a set of primes p; and perform the desired operations over GF(p,); see,
for example, the articles by Brown (pp. 478-504), Collins (pp. 515-532), and Heindel
(pp. 533-548) in J. ACM, Vol. 8, No. 4, October 1971. Then a reconstruction procedure
is applied which produces the correct integer results. We will assume that such a “modulo”
process has occurred and that all of the polynomial’s coefficients are and remain single-
precision numbers.

While analyzing the computing times of these algorithms, only multiplications will be
counted, and we shall assume that initially all the elementsof M have the same number of
terms. We shall also assume that polynomial multiplication is earried out using the classi-
cal algorithm (i.e. the time required to multiply a p term by a ¢ term polynomial is p-q).
In practice there is also the time needed to merge partial sums as we compute the product.
A clever multiplication procedure will only require an extra log min {p, ¢} factor in our
equations, which we will uniformly ignore as we do the analysis. The empirical results of
Section 5 will help to substantiate or perhaps alter any claims initially made on the basis
of the equations obtained simply by counting coefficient multiplications.

The following notation will be used:

1. | P(xy, --+,x,) |18 the number of terms of the polynomial P;

2. T(P, Q) is the number of coefficient multiplications required to multiply poly-
nomials Pand Qor | P |-[Q [;

3. e(M) is an element of the matrix M.

While analyzing the storage requirements we shall assume that we are not permitted
to alter the original matrix M. The storage required to store M will not be explicitly con-
sidered. Then:

4. T{) is the computing time and S{} is the storage required by algorithm y using
model n;

5. deg(P) in x; is the degree of P in its ith variable.

2.1. InterroraTION METHOD. The concept of evaluating the polynomial entries of
a matrix, computing the resulting determinants, and interpolating back has been known
for a long time. A recent study of this approach has been made by MecClellan [14]. Spe-
cifically, he considers the case where the polynomials initially have integer coefficients of
arbitrary size. His method then selects a sequence of single-precision odd primes, p;,
and solves the related problem produced by taking the entries modulo p.. For the purpose
of this paper we consider his algorithm at the stage where the elements of the matrix are
polynomials with coefficients in the field GF(p,).

A more precise specification of this algorithm is now presented.

ALGORITHM EVAL-INTERP

Input: M ann X n matrix, e(M) polynomials in » variables with coefficients in GF (p).
Output: R(zy, -++, z,) = det(M).

1. [Initial case] if r = 0 compute K «— det(M) using Gaussian elimination;
return(R); end.
2. [Initialize] m, «— max {deg(e(M)) in z,} + 1;
[Interpolation] Clzy, -+, z,) « 0, D(z,) < 1;
be——1;
3. [Choose next] be—b+1;
[point]
4. [Evaluation) M(zy, o+ Tey) &= M(zyy -+ Toeoy, b);
[Homomorphism] (evaluate every element of M at b for its rth variable)
5. [Recursion) R(zy, »++, 2,-1) — EVAL-INTERP (M);
6. [Interpolate] Clry -+ 2) — {R(zy -+ Temt) = Cl2y, ++, Trmy, D) }#{D(z)/D (D)}

(the determinant] 4+ C(z;, ---, z,);

On Compuling the Exact Determinant of Malrices with Polynomial Entries 41

7. [Done?] if deg(D) < m,n then
(D(z:) < (z — b)D(z:); go to (3);)
8. [End!] R(zy, -+, z,) « C(z1, +++, z:); end.

Proof that this algorithm works can be found in [14]. Note that the main loop between
steps 3 and 7 is governed by the maximum degree in the main variable of (M) and the
size of the matrix.

Computing time analysis. We assume that each element of M has degree m — 1 in
each of the variables 2y, ---, 2. (and hence has at most m” terms). Thus det(M) has
degree at most (m — 1)n in each variable and at most ({m — 1)n + 1)" terms.

Let T xrre) (r) be the number of multiplications required to compute the determinant
of an n X n matrix with r-variable polynomials using the EVAL-INTERP algorithm and
let @ = (m — 1)n + 1. Then we have:

Step Number of multiplications Comments
4, allm — 2) 4+ 2 (m — 1)) powers of z, + multiplications

5. aT(r — 1) recursion

6. Xia(i—2a'+4 @G —3) evaluating Clzy, -, 21 b)
it i —-2) D (z,)/D(b)
5 a1 (R — C)*D(z,)/D(b)

Thus

T(r) = aT(r — 1) + a(m — 2) + an’m™'(m — 1) + 3(a — 1)(a — 2)a"™"
+ 3a—2)(a—3) +ala+ 1)+ 4(a—1)(a—2)+ }a(a+ 1)a™
=aT(r— D +am—2)4a’m ' (m—1)+ (& —a+ 1o’
+ (2" — 3a + 4).

Working out the recurrence relation, one gets
T(r) = ¢T(0) + r(a’ — a+ 1)a™" + am(a™)/(a — 1)
+ (26" — 5a +r)(@ — 1)/(a — 1)
+ am™'n'(m — D)[(a/m)" — 1]/{(a/m) — 1]
+ am7'n*(m — 1)[(a/m)” — 11/[(a/m) — 1]. (1)

We have maintained this rather unwieldy expression in order to retain the constant.
However, we note that

Tantrr)(0) = n(n — 1)(n + 1)/3, (2)
and hence the asymptotic time for the algorithm is
Tastrey(r) = O((mn) (0’ + mn’)). (3)
Storage. Bounded by r(| R | + n° | e(M) |),
o Saxtrey = 0(rd’). (4)

For later comparison we give here the formulas for the exact computing time of the
EVAL-INTERP method for the special cases of one and two variables (r = 1 and r = 2).
Note that these exact formulas are derived assuming elements over a field.

For one variable the time is

T(1) = alin(n — 1)(n 4+ 1) + 3a — 6 + m + n*(m — 1)] + 35, (5)
and for two variables the time is

T(2) = 3a'n(n — 1)(n 4+ 1) + an*(m — 1)(a + m) + am(a + 1)
+4d® — ba' +a+ 4 (6)

42 E. HOROWITZ AND S. SAHNI

2.2, Gavssiax Evnvination witH Exacr Division. Below is an algorithm given by
Bareiss in [1] that is used for computing the determinant while remaining over the integers.
A proof that this works and that the division in step 2.1.1.1 below is exact may be

found in [1].
ALGORITHM EXACT DIVISION

Input: MY ann X n matrix;

OQutput: R = det(M);

1. -1

2. for i —1ton — 1do;

2:1; for k «— i + 1 to n do:

2.1.1. for j«—i+ 1tondo;))
2.1.11. MED (MOMED — MEPMS) /M,
2.1.2. end;

2.2. end;

3. end

4. Re— MM,

Computing time analysis. Bareiss [1] and Lipson [13] show that each M{}’ is a determi-
nant (minor) of some ¢ X 7 submatrix of the original matrix. Since we assumed all entries
in the original matrix to be of the same size, we may expect that all elements M{}’, for a
given 7, are the same size. Though this is not true in general, it does provide a worst case
analysis.

For each k we have (n —)® executions of step 2.1.1.1. We assume that an exact
division of 4 by B to yield C has the same cost as a multiplication of B by C. Then

n—1
Ter = 2, (n— ' QTM, M) + T(MG™, MiG™)). (7)
1=]1
Storage.
See < max {(n— 0| MG (8)
0<i<n—1

2.3. CuaracTERISTIC PoLyNomiaL. Here we compute the characteristic polynomial
P(\) = det(M — M) of the matrix M. The coefficient of A° is the determinant of M. This
method is deseribed in detail in [13]. As may be expected from the results of [8] and [12],
the O(n*) method for matrices with integer elements deseribed in [13] turns out to be
better than the O(n®*®) method when applied to an M whose entries are polynomials in
at least one variable.

ALGORITHM CHARACTERISTIC POLYNOMIAL

Input: M an n X n matrix;
Output: R = det(M);
1. [Compute trace of powers of M] S(1) « Trace(M);
fori+—2tor
do; ‘
MY MM
8 (i) « Trace(M?);

end;
2. [Compute coefficients of characteristic polynomial of r(0) « 1;
M:P(\) = X r{i)v! r(1) « —8(Q1);
for ¢ «+— 2 to n do;
i—1
r6@) — =X r()S6 = /i;
=
3. [Return determinant] R «— (—1)r(n); end.

Computing time analysis.

n—1
Tistop 1) = n32;1, T(e(m), e(M")),

n i—1
T(step 2 = ; {;}T{T(J)J S(T’ _.7)) + IT(?’) l }r

T(CP) = T(atep 1) + T(Atcp 2). {9)

On Computing the Ezact Determinant of Matrices with Polynomial Eniries 43

Storage. We assume | e(M*) | > | e(M*™™) | for i > 1. Then storage for step 1 is less
than or equal to 2’ | e(M™) | + #* | e(M"™) | + Y1y | 5(2) |. The r(7) of step 2 may be
stored in space freed by M‘™ and M. Therefore

Sierr < 1 eQE) |+ 1) [} + 3 1560) | (10)

2.4, Evavvarion BY Mivors. This is a well-known method and can be found, for
example, in [12, p. 440, Ex. 10].

Here we have n — 1 steps, indexed by 7 from 2 to n. At each step, we compute all of
the 7 X 7 minors from the first 7 columns (there are (:) of them), using the s — 1 X
¢ — 1 minors from the first ¢ — 1 columns, computed in the previous step. Gentleman and
Johnson consider this method in [7]. _

Computing time analysis. The cost of computing an ¢ X ¢ minor, assuming that all
required ¢ — 1 X ¢ — 1 minors are available, is 7 times the time to multiply an element
of M by a minor of size ¢ — 1. Therefore the total time becomes

Poiay = 2, (:‘) iT(e(M), deti_y 1)

=

= ?ZZ [(n— 1)/ — 1) (n —)NT(e(M), detiyiq)
S in—1
= n;(;)T(e(M), det ;). (11)

Storage. At step 7 we compute the(?) minors of size ¢ X 7. Concurrent with this, the

(i _?_1 1) minors of size 7 — 1 X 7 — 1 have to be retained.

.. Storage required at step 7 < (?) | det;: | + (1 _n 1) | deti_y1 |

S(’MS) = max)(?) \ det{,,-l + (?, _?_?, 1) ! det"_uq J } {12)

2<1<n

3. Models and Analysts

In this section we analyze the times for applying the methods of Section 2 to the problem
at hand. One should note that the time and storage formulas derived for the last three
methods are independent of any assumptions about the elements of the matrix, other
than that they must be from an integral domain. But our particular concern is for ele-
ments which are multivariate polynomials. Such polynomials can be quite diverse and
may behave radically different as operations are performed on them. Thus it is necessary
to make some assumptions about the way in which the polynomials grow as the reduc-
tions are carried out. In this case we hypothesize models which will hopefully reasonably
reflect reality. In order to provide some motivation for the models we have used, let us
look at the two extreme possibilities that can oceur.

Suppose that every element of M is a polynomial in r variables, degree m — 1 in each
variable, and every possible term occurs. Then each polynomial initially has m’ terms
and is said to be completely dense. Suppose further that as we apply Gaussian elimina-
tion the resulting submatrices have polynomials which remain dense. In particular at the
ith stage, each element has degree i(m — 1) in every variable and (i(m — 1) + 1)
terms. A gencralization of this growth rate for the completely dense case is given in
Section 3.1.

Now for the other extreme case suppose that every element of M has ¢ terms and as
we apply Gaussian elimination the resulting polynomials have 7!¢° terms at the ith stage,

44 E. HOROWITZ AND 8. SAHNI

1 < i < n. This is equivalent to saying that after every iteration every term produced in
the multiplication process is distinct from every other term. This gives the maximum rate
of growth that could occur without terms overlapping and implies that the polynomials
were initially quite sparse. Section 3.3 contains a generalized model for this completely
sparse case.

Then in Section 3.2 a model which is intermediate to the generalized dense and gen-
eralized sparse models is presented. Within each of the three models we will consider the
four algorithms—evaluation-interpolation, Gaussian elimination, minors, and charae-
teristic polynomial—and compare their relative performances.

However, before we begin let us consider separately the evaluation-interpolation
method, whose computing time remains the same for all of the models. This circumstance
arises from the fact that there is no way for it to take advantage of any existing sparsity
within polynomials. If for every element of M the degree of e(M) in each variable is
m — 1, then the evaluations and interpolation must be carried on (m — 1)n + 1 times
at every level. This is so, even if a polynomial has only ¢ terms where ¢ is much smaller
than m’. Therefore the asymptotic computing time for this algorithm remains O((mn)"(n
+ mn’)) independent of any of the models. Thus we can already surmise that though the
evaluation-interpolation method may work quite well on completely dense polynomials
of reasonably small degree and number of variables, other methods will become superior
as the matrix’s polynomials become more sparse. It is the primary purpose of the three
models to allow for both sparse and dense polynomials which grow at different rates.

We will abbreviate the generalized dense, average growth, and generalized sparse
models by GD, AG, and GS. The methods of Gaussian elimination, characteristic poly-
nomial, and minors will continue to be referred to as GE, CP, and MS, respectively. Much
of the actual derivations which produced the results of Sections 3.1, 3.2, and 3.3 have been
deleted for readability, but they may be found in [9].

3.1. GENErsLIzED DExsE Mopen. In this model we assume that a minor of size
¢ % 7 has % terms, where ¢ = | e(M) | and k is a nonnegative integer. We note that for
{ = m"and k = r this model corresponds to the case where the e(M) are completely dense
polynomials in r-variables and remain completely dense throughout (actually the growth
is as (i(m — 1) + 1)» = 0(im7)). On the other hand, small values of k and ¢ allow for
very sparse polynomials which grow at the same rate as the dense polynomials.

3.1.1. Gaussian Elimination. Using eq. (7), we get

T = X (n— 0T, M) + T, M5™)
=1<§ l(ﬂ — DN + G+ DM — 1)f) = 0(fn™).

For the completely dense case t = m’, k = r we get
T(GE] = O('mzrnzwa) b O((mn)r(n3 “’{" m?’lg)) = T(IN’I‘RP)-

Thus evaluation-interpolation is asymptotically superior to Gaussian elimination on
completely dense polynomials for all r > 1.
From eq. (8) we get SR = maxi<i<a (n — 1)*(i 4+ 1)*. The maximum occurs for
i= (kn — 2)/(k + 2), and thus we get S{&%) < 0((n + 1)*Pt/k).
As special cases, the exact equations for one and two variables are derived in Section
3.4.
3.1.2. Characteristic Polynomial. Let |r;|, | Si|, and |e(M’) | = it Using eq. (9)
we get:
1—1 n
Fa =+ Lt
i=1 =2 j=1 i=2

£k + 1) + 38(n + D*P/a 0k + 1) + "
O(fnt (4 ' + o) /4" (k + 1)).

n—1 n
(GD) 3 -k ,2
T(Cp; =N z 1t + Z

A

It

On Computing the Exact Delerminant of Matrices with Polynomial Entries 45

Using eq. (10) for the storage requirements we get
SER < Wnft 4+ (n — DX} + 3 #t < 05,
1

3.1.3. Minors. Here |det;:| = i, T{e(M), det:;) = 7 and substituting into
eq. (11) we get
n—1
T8 = nz(” : 1)# < n(n — 1)2"7F,

=1

For the storage requirements we get, from eq. (12),

568 <pa {0+ (2 1) 6 -0t <an(,7,).

The exact values for one and two variables appear in Section 3.4.

3.2. AvERrRAGE GrowTH MopEL. In this model it is assumed that the multiplication
of a p-term polynomial and a g-term polynomial (p > ¢) results in a kp-term (1 < k < p)
polynomial, while their addition yields a p-term polynomial. Such behavior arises, for
instance, when k = ¢, the polynomials P and @ are sparse, and the exponents occurring
in @ are a subset of those occurring in P. Examples for other values of k may be obtained
by varying the degree of sparsity and exponent distribution in P.

The determinant of an ¢ X ¢ matrix may be viewed as the sum of i! terms, where each
term is a product of ¢ polynomials. If each polynomial entry in M has ¢ terms, then under
our assumptions each of the 7! terms in the sum for det (M) has k't terms and det (M)
is a polynomial with ¥" 't terms (because of the assumption for addition of polynomials).
We note that the case when all the entries of M are integers is a special case of this model,
le.k = landt = 1.

3.2.1. Gaussian Elimination. By assumption | M | = k™'t Using eq. (7) we get
TEe = Disicna (n — DCET) + K %-k%), with ¥ = 1. Then TS =
2acizna (n — DB < 0K Pn*). For the storage, we get from eq. (8):
S8 = maxo<i<ar {(n —)%, whichis < k"t for k¢ > (5 + 1)~

3.2.2. Characteristic Polynomial. Since in the average growth model we assume that
the addition of a p-term and a g-term polynomial (p > g¢) results in a p-term polynomial
while their product has k p-terms, we obtain |s;| = |e(M*) | = k™, as s; is just the
sum of the diagonal entries of M. We make the further assumption that | r; |= | sl

From eq. (9) we get: TES) = Twter 1 + Tistop 2+

i _ PR = /(= 1), k> 1,
(aren2) lna(n — 1), k=1,

7 _ = DE = kT 1)/ = 1) 4+ (B = k)t — 1), k> 1;
(e d) itn(n — 1) + t(n — 1), k=1
Therefore
Ta0 _ O(R*CE"™ + £nk"%) = O(A* ™), &k > 1
©P T 0@, k= 1.

Substituting in eq. (10) for the storage, we obtain S8{35 = O(n*k"™'¢).
3.2.3. Minors. Here |deti;| = k"'t and thus T(e(M), det,,) = k" '¢. Substituting
into eq. (11) we get
n—1 n—1
TES =n Y (”: 1) B = nﬁk(: (”: 1) - 1) = /b [(1 4+)" = 1].

i=1 pr

Equation (12) yields:
Sff&% = max {(n) B+ (zf 1) ki“gt} < 2601+ k).

2<i<n T

46 E. HOROWITZ AND S. SAHNI

3.3. GexeraLIZED SPARSE MopEeL. The assumptions for this model are similar to
those for the average growth model. As in that model, here too, it is assumed that the
product of a p-term and a g-term (p > ¢) polynomial is a kp-term (1 < k < ¢) poly-
nomial. However, we now assume that the exponents present in @ are not present in P
so that their addition results in a (p + ¢)-term polynomial. For k = g, this means that
P, Q are totally sparse and have no exponents in common.

The consequences of this change in assumption for addition is that the determinant of
an 7 X ¢ matrix now has a number of terms equal to ¢!- (number of terms in the product
of 7 polynomials) = 7!k*™ t terms. For k = ¢, this represents the maximum possible growth
rate that can occur. It is readily seen that the n X n matrix whose 7, j element is 7y,
where r;; represents a variable and 7;; = nm < ¢ = land j = m falls under this model
with k = ¢ = 1. Examples for other values of k, ¢ can easily be constructed.

3.3.1. Gaussian Elimination. From eq. (7) we obtain T3 = O(nl%*"?%%), and
eq. (8) gives, for the storage, S{Gg) = maxi<i<a{(n — 1)*(¢ + 1)1k}, whichis <
n!k"'t for m, k > 2. For the completely sparse case we get Tign'" = O(n*n**"?) and
SET = o).

3.3.2. Characteristic Polynomial. Since in this model we assume that multiplication
of a t-term polynomial by a {-term polynomial results in a kf-term polynomial and that

their addition yieldsla Zt-term_ polynomial, we get | e(M") | = (nk)™. _
Since s; = 971 a;; where aj, is a diagonal entry of M", we obtain | s;| = n | e(M") | =
n'k'™'t. In step 2 it is assumed that no new terms are generated so|lri|=|s|=n%k""t

Substituting fur |e(M™) |, | :|, | 8:| in eq. (9), we get Tiap = Tetep 1) + Tiaten 2
Totenny = 1 Zt (k) 7't = n*Cl(nk)™ = 1)/ (nk — 1),

|-1

Tiep sy = W80 — 1)(nk)" — n(nk)"™ + 1)/(nk — 1)* + nf[(nk)" — nk]/(nk — 1),
nk > 1.

Therefore Tics) = O(n"Y'k" 7). The storage required is
S&) < {(nk)" 4 (nk)" + 2 n'% Tt = 0" MK,
=]

and for the completely sparse case we have (& = O(n"*'t") and S{&T™ = 0(n"*'(").
3.3.3. Minors. Here|det;;| = i'k'™"t, T(e(M), det:) = ikt and thus e =

b T l)i!k"'ltz < nl k"5 For the completely sparse case (k = t), we get

Y = l" !, Equation (12) yields, for the storage required,
Sige = max {(’.’) HET 4 (.) (i— 1)!kHt} =nl k(L + 1/k) .
2<i<n 1 oy

For the completely sparse case, this gives Stiay” = n!¢"(1 + 1/t) < 1-5n!t", t > 2.
3.4, Specian Cases. In this section we derive the exact equations for the methods

Gaussian elimination, characteristic polynomial, and minors under the assumption of

dense polynomials in one and two variables. These particular cases are ones which are

often useful in practice. _
3.4.1. Gaussian Elimination. With |e(M)| = t, | M| = i(t — 1) + 1, and sub-

stituting in eq. (7) we get
ngen;c univariate) — 'gl(;n(n o 1)
3 4 30t — Tn + 8)(t — 1)* 4 1n(n — 1)(¢t — 1) + 15(2n — 1)]. (13)
Withm® = ¢, | M¥ | = (i(m — 1) + 1), and substituting again in eq. (7) we get
T P = (e’ — fpn’ 4 oon’ — 0”4 Pfen) (m — 1)

+ (4n® — ' 4+ Fn")(m — 1)°
+ (¢° — 2P 4+ 0" — Hn)(m — 1)
4+ (P —r)(m— 1)+ 2" = ¥+ in (14)

On Computing the Exact Determinant of Malrices with Polynomial Entries 47

3.4.2. Characteristic Polynomial. Here |r:|, | S, |, and [e(M') | = i(t — 1) + 1.
Thus the time becomes
TE™ ™" = n(n — DB — Dt + 2t + 50 + D(n + 2)(t - 1)’
+in+ -+ 1+ dnn+D(E—-1) —t+n (15)
For two variables we have | 7, |, | Si |, | e(M") | = (i(m — 1) + 1)* and T{omse biveriste) _
Towpn + Titep
Towrn = n'(n — DifAn(2n — 1)(m = 1)* + n(m — 1) + 1]
n i—1
Ttepny = 2 ,Z; (7(m — 1" + 2j(m — 1) + 1)((z — j)*(m — 1)*

+2(i—j)(m—1)+1)+gin|

TEs "™ = (m — Digden'(n + 1)(20° 4+ 40" + 2 — 1) — don(n + 1)}

+ (m — 1)*Fon(n + 1)(2n + 1)(32° 4+ 3n — 1) — $n(n + 1)(2n + 1)}
+ (m = D'’ (n+1)" — In(n + 1) — 1}

+ (m — Diin(n + 1)(2n + 1) — 2} + gn(n — 1) + (n — 1). (16)
3.4.3. Minors. For the case of one variable we get |e(M)| = ¢ and therefore

deg (e(M)) =1t — 1,|det;;| =it — 1)+ land T(e(M), det;,;) = @t(t — 1) + ¢.
nglegie univariate) 2o ?’lt[(t _ 1)(?@ . 1)2’1—2 + 2ﬂ—1 ' 1}. (17)

This result was first given by Gentleman and Johnson in [7].
The special case of dense bivariate polynomials yields | e(M) | = m
deg (e(M)) = m — 1. Then

|deti;| = (i(m — 1)+ 1)* and T(e(M),det;;) = t(i(m — 1) + 1)
ngfgiebiv“iate} = nt{zn—l £1ch 2”_2{(71 — D[(m — 1)2 + 2(m — 1]}
+ 2% (n — 1)(n — 2)(m — 1)) = 1). (18)

2 2
, t = m", and

4. Asymptotic Conclusions

The table below summarizes the asymptotic computing times and storage requirements
for each of the three methods under each of the three models. The methods are listed in

increasing order of time.

Method Time Space

Generalized dense:

Characteristic polynomial 12 (nktd 4 pit2/4k) inktt

Gaussian elimination {2n2kt3 t{n + 1)k+2/k2

. n

Minors Ppkti12n—2 m*(n /2)
Average growth:

Minors inkn? 2tk + 1)/ k

Characteristic polynomial Endkn2(k > 1) thkv1nt

Gaussian elimination {ndk2in2) thn1
Generalized sparse:

Minors 12n) kn2el/k tn!t k11 + 1/k)

Characteristic polynomial t2nntifne tp g1

Gaussian elimination 212k = 2n tr! k1

Thus we can conclude that asymptotically the following is true: for both the average
growth and generalized sparse models, minors is the best method for all values of k. As
for storage, minors is either better than or no worse than any of the other methods by a
constant factor. In fact for the completely sparse polynomial case, as considered by
Gentleman and Johnson in [7] where k = ¢, minors is optimal to within a constant factor.

48 E. HOROWITZ AND 8. SAHNI

For the generalized dense model the characteristic polynomial method is superior for all
k > 1, and equivalent to Gaussian elimination for k = 1.

The fact that minors is asymptotically the best method on certain models is important,
but one must note that because of the exponential growth of this method only relatively
small problems could ever be successfully computed. Thus it still remains to show the
practical usefulness of adopting minors over the other more commonly used methods.
However, we note that this conclusion is supported by recent work of Bareiss and Mazu-
kelli [3], who show that a modified Cramers rule is useful for solving a numerical system
when m is much larger than n.

But before doing that there is more to be gained from the formulas just derived, realiz-
ing that practical computation will imply small values for all of the variables. For example,
in [7] it is shown that for univariate dense polynomials minors is better than Gaussian
elimination for n < 7. If M has completely dense univariate polynomial entries, then, by
eqs. (5), (13), and (17) which give the exact computing times for evaluation-interpola-
tion, exact division, characteristic polynomial, and minors, we find that for any number
of terms ¢ > 1, minors is better on matrices whose size is n < 5. So in the completely
dense univariate case it is better to use minors over evaluation-interpolation or charac-
teristic polynomial as long as the size of the matrix is <5 no matter how many terms are
in the polynomials.

Similarly examining eqs. (6), (14), (16), and (18) for the completely dense bivariate
case, minors requires fewer multiplications as long as one of the following conditions
hold: (a) n=2&2<m<28;(b)n=3&2< m<1l;(e)n=4&2<m<4

For n > 4, evaluation-interpolation requires fewer operations than minors. We further
note that the Gaussian elimination method will be worse than either minors or charac-
teristic polynomial for all m, n > 1. Thus the formulas imply that Gaussian elimination
is a poor method to use in every case.

Thus at this point we see that for the broad possibilities of polynomials as subsumed
within the generalized sparse and average growth models, minors is the choice. Also, for
small problems with completely dense polynomials, minors is better. For problems as
described by the generalized dense model, characteristic polynomial has a smaller opera-
tion count than Gaussian elimination but requires more storage. The next section on
empirical tests will give a clearer picture of which method is favorable. Though in the
case of generalized dense, minors is exponential, whereas the other two methods are
polynomial functions of n and ¢, the feasible domain of computation implies small n and
so we will continue to keep all three methods under serutiny.

5. Empirical Studies
Using the SAC-1 system [5], which allows for symbolic operations on polynomials, and
an IBM 360/65, several tests were run to determine the relative merits of the three meth-
ods: minors, Gaussian elimination, and characteristic polynomial. The results of these
tests are given in Table I. Entries marked (*) indicate that the workspace provided,
30,000 words, was not enough to compute the corresponding determinant.
Let a;; denote an element of the matrix M, whose determinant is to be found. Then the
data sets used were:
Data set I (symmetrie Toeplitz matrix): ai; = 2ji-.
Data set II (Vandermonde matrix): a.; = (z;)"".
Dataset III: ai; = 9.0 2% a; = 1 + zaiy.;,7 > 1.
Data set IV: Let M(x) and M.(y) be the two matrices constructed using data set 111
with variables and y. Then M = M,(x) + M.(y).
Data set V: This is similar to data set IV but now M = Mi(x) + Ma(y) + Ma(z).

Data sets I and IT are instances of the generalized sparse model; data set III is an in-
stance of the generalized dense, and data sets IV and V are examples of the average growth

mode).

On Computing the Exact Deferminant of Matrices with Polynomial Enlries 49

TABLE I. TimMe ReEQUIRED To CoMPUTE THE DETERMINANT OF aN 7 X n MarTrix Usine
taE SAC-1 System oN THE IBM 360/65

Times in seconds

Data set " Minors Gaussian elimination Cg:f;;g;:iﬁc
1 3 .1 1 .5
Symmetric Toeplitz 4 7 1.3 4.5
5 3.5 9.6 32.3
6 18.1 L o)
7 N
II 3 1 .2 .8
Vandermonde 4 0.6 1.5 9.0
5 3.6 17.4 .
6 [Y
111 3 1 =k 1.3
4 .4 4 11.9
5 1.1 .9 66.0
6 2.6 2.0]
7 5.2 3.5
8 9.7 5.7
9 16.6 9.0
10 N 13.2
1 21.5
12 34.8
13 38.7
14 53.6
15 68.8
v 3 .8 .8 8.7
4 5.3 4.5 x
5 22.3 13.8
6 -] 34.8
7 70.9
8 128.8
9 a
Vv 3 2.7 3.2 30.8
4 31.2 49.4 &
5 [} a

* = the provided workspace, 30,000 words, was insufficient.

From the results reported in Table I and corroborated by the results of [7 and 14}, it
is clear that only relatively small problems can be solved in a reasonable amount of space
and time. Rarely can n exceed 10 except for small polynomials in one variable. In {7] the
maximum 7 before storage was exceeded was 7 and in [14] for two variables or more the
maximum n was 5. Typically, only problems with an n < 6 can be solved.

Examining Table I more closely, we see that minors worked best as predicted for data
sets I and II. For n = 5 it was doing at least three times better than its nearest competi-
tor. But note that in both cases it only allowed us to compute for one higher value of n
before storage was exceeded.

The case for data sets IV and V is more interesting in that it shows up the inadequacy
of doing only a computing time analysis without testing. Minors is predicted as being the
best method, but for all practical cases Gaussian elimination does as well or much better.
For the case of n = 4 and three variables, minors does finally compute the solution faster
than Gaussian elimination. We would expect that if we could handle larger problems,
the scales would tip toward minors. But within the conceivably useful range, Gaussian

50 E. HOROWITZ AND S. SAHNI

elimination is preferable. Similarly for data set I1I, which is an instance of generalized
dense, Gaussian elimination does much better than the other two methods.

Thus the conclusions resulting from Sections 4 and 5 seem to us to be as follows: for
relatively sparse matrices minors is preferable, whereas for relatively dense matrices
Gaussian elimination should be chosen.

We note that in all cases characteristic polynomial turned out to be poor in practice.
We have run some experiments using another method. This is a hybrid approach which
first uses Gaussian elimination, and if the polynomials become large it switches to minors.
We have run this combined algorithm on several of our data sets, but have been unable to
improve upon the simpler, single algorithm. Finally, an important practical reason for
preferring Gaussian elimination over all the other methods is the user’s ability to watch
the matrix as it is being reduced. Sometimes even if one can’t produce the final answer,
a lot can be gained from watching several steps. The other methods, with their strategies
of breaking up the problem, make it harder to see what is going on with only partial
output.

Acknowledgment. We would like to thank Morven Gentleman for initially suggesting
the problem to us. We also would like to thank Erwin Bareiss for his helpful suggestions,
as well as the referees.

REFERENCES

1. Baresss, E. H. Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Math. Compt. 22, 103 (July 1968), 565-578.

2. Bagreiss, E. H. Computational solutions of matrix problems over an integral domain. J. Inst.
Math. and Appls. 10 (1972), 68-104.

3. Bargrss, E. H., axp Mazukewrr, D. Multistep elimination over commutative rings. Argonne
National Lab. Rep. ANL-7898, April 1972.

4. Capay, S. Exact solution of linear equations. Proc. Second Symposium on Symbolic and
Algebraic Manipulation, ACM, Los Angeles, Calif., March 1971, pp. 392-398.

5. CorrLins, G. The SAC-1 system: An introduction and survey. Proc. of the Second Symposium
on Symbolic and Algebraic Manipulation, ACM, Los Angeles, Calif., March 1971, pp. 144-152.

6. Donrr, F. W. An example of ill-conditioning in the numerical solution of singular perturbation
problems. Math. Comput. 25,114 (April 1971), 271-284.

7. GentLEMaN, W, M., anp Jounson, S. C. Analysis of algorithins, a case study: Determinants
of polynomials. Proc. of the Fifth Annual ACM Symposium on Theory of Computing, Austin,
Texas, April 30, 1973, pp. 135-142.

8. Horowirz, E. The efficient calculation of powers of a polynomial. J. Comput. Syst. Sei. 7, &
(Oct. 1973), 469-481.

9. Horowitz, E., ANp Sanni, S. On computing the determinant of matrices with polynomial
entries. Comput. Sei. TR 73-180, Cornell U., Ithaca, N.Y., June 1973.

10. Howkry, J., anp Grecory, R. T. Solving systems of linear algebraic equations using residue
arithmetic I, II, and II1. BIT § (1969), 200-224, 324-337, and BIT 10 (1970), 23-27.

11. Isaacson, E., anp KeLLer, H. B. Analysis of Numerical Methods. Wiley, New York, 1966.

12. Knvuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms. Addison-
Wesley, Reading, Mass., 1969.

13. Laeson, J. D. Symbolic methods for the computer solution of linear equations with applica-
tions to flow graphs. Proc. of the 1968 Summer Institute on Symbolic Mathematical Computa-
tion, IBM, Boston, June 1969, pp. 233-303.

14. McCrLerLLan, M. T. The exact solution of systems of linear equations with polynomial coeffi-
cients. J. ACM 20, 4 (Oct. 1973), 563-588.

RECEIVED JANUARY 1973; REVISED FEBRUARY 1974

Journal of the Association for Computing Machinery, Vol. 22, No. 1, January 1975

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013

