JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 1, 185-205 (1984)

A Farallel Matching Algorithm for Convex Bipartite Graphs
and Applications to Scheduling”

ELIEZER DEKEL" AND SARTAJ SAHNI

Department of Computer Science, University of Minnesota,
Minneapolis, Minnesota 55455

An efficient parallel algorithm to obtain maximum matchings in convex bipartite
graphs is developed. This algorithm can be used to obtain efficient parallel algorithms
for several scheduling problems. Some examples are: job scheduling with release
times and deadlines; scheduling to minimize maximum cost; and preemptive sched-
uling to minimize maximum completion time.

1. INTRODUCTION

A convex bipartite graph G is a triple (A, B, E). A = {a;, a, . . ., a,} and
B = {b), by, . ., b,}aredisjoint sets of vertices. F is the edge set. E satisfies
the following properties:
(1) If (i, j) is an edge of E, then either i € Aandj € Bori € B and
Jj € A, i.e., no edge joins two vertices in A or two in B.
(2) If (a;, b)) € E and (a;, bj+i) € E, then (a;, by EE, 1 =q <k
Property (1) above is the bipartite property while property (2) is the con-
vexity property. An example of a convex bipartite graph is shown in Fig. 1.1.
F C E is a matching in the convex bipartite graph G = (A, B, E) iff no two
edges in F have a common endpoint. F1 = {(a,, b,), (a4, b3), (as, b))} is a
matching in the graph of Fig. 1.1 while F2 = {(ay, b)), (a1, b)), (az, b3)} is
not. F is a maximum cardinality matching (or simply a maximum matching)
in G iff (a) F is a matching and (b) G contains no matching H such that
|H| > |F| (|H| = number of edges in H). The matching depicted by solid
lines in Fig. 1.1 is a maximum matching in that graph.
In what follows, we shall find it convenient to have an alternate represen-
tation of convex bipartite graphs. It is clear that every convex bipartite graph

*This research was supported in part by the Office of Naval Research under contract
N00014-80-C-0650.
"Current address: Mathematical Sciences Program, University of Texas at Dallas, Rich-
ardson, Texas 75080.
185
0743-7315/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

186 DEKEL AND SAHNI

A B
a; bl
8 b,
a3 O by
%
e

FIG. 1.1. A convex bipartite graph.

G=@AB E,A={a,...,a},B={b, ..., b,}is uniquely repre-
sented by the set of triples:

T = {(l, Siy h,)‘l =i = I’l}
S = min{j|(ai, bj) = E}
h; = max{j|(a;, b) € E}.

In the triple representation, we explicitly record the smallest (s;) and highest
(h;) index vertices to which each a; is connected. For the example of Fig. 1.1,
we have T = {(1, 1, 2), (2, 3, 3), (3,0, 0), (4, 3, 3), (5, 1, 3)}.

As an example of the use of matchings in convex bipartite graphs, consider
the problem of scheduling a set J of n unit time jobs to minimize the number
of tardy jobs. In this problem, we are given a set, of n jobs. Job i has a release
time r; and a due time d;. It requires one unit of processing. We assume that
r; and d; are natural numbers. A subset F of J is a feasible subset iff every job
in F can be scheduled on one machine in such a way that no job is scheduled
before its release time or after its due time. A feasible subset F is a maximum
feasible subset iff there is no feasible subset MAXM of J such that [Q| > [J].

A maximum feasible subset F can be found by transforming the problem
into a maximum matching problem on a convex bipartite graph. Without loss
of generality, we may assume that min {r;} = 0; r;, < d, 1 =i =< n; and
max {d;} = n. The convex bipartite graph corresponding to J is given by the
triple set T = {(i, s;, h;) |S,» = r, h; = d; — 1}. Figure 1.2 shows an example
of a job set and the corresponding convex bipartite graph G. Vertex i of A
represents job i while vertex i in B simply represents the time slot [, i + 1].
There is an edge from job i to time slot [, j + 1] iff r, = j < d;. Hence,
every matching in G represents a feasible subset of J. Also, corresponding to
every feasible subset of J there is a matching in G. Clearly, a maximum
cardinality feasible subset of J can be easily obtained from a maximum
matching of G. In addition, a maximum matching also provides the time slots
in which the jobs should be scheduled.

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 187

r.=s, d.,=h +1 A B
i 14

0 2

0 3

2 4

2 6

4 5

2 6 6 5

FIGURE 1.2

We shall see several other examples of the application of matchings in
convex bipartite graphs in later sections.

Glover [5] has obtained a rather simple algorithm to find a maximum
matching in a convex bipartite graph G = (A, B, E). Let h =
max {j|(a;, b) € E}, 1 =i < |A|. Glover’s algorithm considers the verti-
ces in B one by one starting at b;. We first determine the set R of remaining
vertices in A to which the vertex b; currently being considered is connected.
Let g be such that a, € R and h, = min, ek {h,}. Vertex b, is matched to a,
and a, deleted from the graph. The next vertex in B is now considered.
Observe that Glover’s algorithm is essentially the same as that suggested by
Jackson [6].

A straightforward implementation of Glover’s algorithm has complexity
O (mn). When m is O (log log n), a more efficient implementation results from
the use of the fast priority queues of van Emde Boas [4, 8]. The resulting
implementation has complexity O (m + n log log n). The fastest sequential
algorithm known for the matching problem is due to Lipski and Preparata [8].
It differs from Glover’s algorithm in that it examines the vertices of A one by
one rather than those of B. This algorithm has complexity O (n + mA (m)),
where A (+) is the inverse of the Ackermann’s function and is a very slowly
growing function.

In this paper, we are primarily concerned with parallel algorithms. In
Section 2, we obtain a parallel algorithm for maximum matchings in convex
bipartite graphs. In Section 3, we use this parallel algorithm to obtain efficient
parallel algorithms for three scheduling problems. All our analyses will as-
sume the availability of as many processing elements (PEs) as needed. This
is in keeping with much of the research done on parallel algorithms. In
practice, of course, only k processors (for some fixed k) will be available. Our
analyses are easily modified for this case. It will be apparent that if our
algorithm has time complexity #(n) using g(n) PEs, then with k& PEs
(k < g(n)), its complexity will be z(n)g(n)/k.

188 DEKEL AND SAHNI

The parallel computer model used is the shared memory model (SMM).
This is an example of a single instruction stream-—multiple data stream
(SIMD) computer. In a SMM computer, there are p PEs. Each PE is capable
of performing the standard arithmetic and logical operations. The PEs are
indexed 0, 1, . . ., p — 1 and an individual PE may be referenced as in
PE(i). Each PE knows its index and has some local memory. In addition,
there is a global memory to which every PE has access. The PEs are syn-
chronized and operate under the control of a single instruction stream. An
enable/disable mask may be used to select a subset of the PEs that are to
perform an instruction. Only the enabled PEs will perform the instruction.
Disabled PEs remain idle. All enabled PEs execute the same instruction. The
set of enabled PEs may change from instruction to insiruction.

If two PEs attempt to simultaneously read the same word of the shared
memory, a read conflict occurs. If two PEs attempt to simultaneously write
into the same word of the shared memory, a write conflict occurs. Throughout
this paper, we shall assume that read and write conflicts are prokibited.

The reader is referred to [2] for a list of references dealing with graph
algorithms, matrix algorithms, sorting, scheduling, etc., on a SMM com-
puter.

2. PARALLEL MATCHING IN CONVEX BIPARTITE GRAPHS

In Section 1, we showed that every instance of the problem of scheduling
jobs to minimize the number of tardy jobs could be transformed into an
equivalent instance of the maximum matching in a convex bipartite graph
problem. It should be evident that the reverse is also true. Hence, the two
problems are isomorphic. A parallel algorithm for a special case of the job
scheduling formulation was obtained by us in [1]. In this special case, it was
assumed that all jobs have the same release time. This corresponds to the case
when the convex bipartite graphs are of the form T = {(i, s, h)|1 <i < n}
and s;, = ¢, 1 =i = n for some c.

We shall now proceed to show how the solution for the special case
described above can be used to solve the general case when all the r;’s are not
the same. This will be done using the binary tree method described by Dekel
and Sahni [2]. Rather than specify the new algorithm formally, we shall
describe how it works by means of an example.

A convex bipartite graph is shown in Fig. 2.1. For this graph, |A| = 14
and | B| = 13. The s; and A; values associated with each vertex of A are given
in the first two columns of this figure. The first step in our parallel algorithm
for maximum matching is to sort the vertices in A in nondecreasing order of
s;. Vertices with the same s; are sorted into nondecreasing order of 4;. For our
example, the result of this reordering is shown in Fig. 2.2.

Following the sort, we identify the distinct s; values. Let these be

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 189

si hi A B
4 8
1 4
1 3
1 4
4 10
4 4
1 2
9 11
9 10
12 13
9 13
4 11
12 13
12 12

FIGURE 2.1

Ri,R,,...,R,. Assume that R <R, <---<R. Let Ry =
max {h;} + 1. For ourexample, k = 4andR(1 : k + 1) = (1,4,9, 12, 14).

We are now ready to use the binary tree method of [2]. The underlying
computation tree we shall use is the unique complete binary tree with k leaf
nodes. Figure 2.3 shows the complete binary trees with 4, 5, and 6 leaf nodes.
For our example, k = 4 and we use the tree of Figure 2.3a. With each node,
P, in the computation tree, we associate a contiguous subset
{u,u+1,u+2,...,v} of the vertices in B. This subset is denoted
[u, v] - P or simply [u, v].

7 3121|416 115|129 |8 |11|14 |10/ 13

1|1 |1 14|44 4 919 9 |12 |12 |12

2 3|4 4 4 8§ 11011 (10|11 |13 |12 13|13

=3 9}
T e

FIGURE 2.2

190 DEKEL AND SAHNI

(a) (b) (c)

FiG. 2.3. Complete binary trees: (a) 4 leaves; (b) 5 leaves; (c) 6 leaves.

Let the leaf nodes of the computation tree be numbered 1 through &, left
toright. If P is the ith leaf node, then [u, v] - Pis[R;, Rixy — 1](.e.,u = R,
and v = R;; — 1). If P is not a leaf node, then the subset of B associated
with P is [u, v] - LC(P) U [u, v] - RC(P), where LC(P) and RC(P) are,
respectively, the left and right children of P. The subsets of B associated with
each of the vertices in the computation tree for our example are shown in Fig.
2.4. The number in each node of this tree is its index.

Let P be any vertex of the computation tree. Let [u, v] be the subset of B
associated with P. The subset of A available for matching at node P is denoted
M (P) and is defined to be

M@P) = {ilu = s, < v}
For example,
M) =1{1,2,..., 14}
MQ2)=1{1,2,3,4,5,6,7, 12};
M@ =1{2,3,4, 7}

etc.

The subset M (P) of A vertices available for matching at P may be par-
titioned into three subsets MAXM(P), I (P), and T (P). MAXM(P) is a max-

© [1,13]

[1,3] [4,8] [9,11] [12,13]

FIGURE 2.4

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 191

s, h} A’ B'
4 8 10 Q1
1 4 20O O2
1 3 30 O3
1 4 4O Q4
4 8 50 Os
4 4 60O Os
1 2 70 Oz
4 8 120 Os
FIGURE 2.5

imum cardinality subset of M (P) that may be matched with vertices in
[u, v] - P; this subset is called the matched set. I(P) denotes the infeasible
set. It consists of all vertices i € M (P)—MAXM(P) such that #; =< v. The
transferred set T (P) consists of all vertices i € M (P)—MAXM(P) such that
h; > v.

Consider node 2 of Fig. 2.4. The matching problem defined at this node
is given in Fig. 2.5. Note that 4/ = min {v, h;}. A’ is the set M(2) and B’
is [u, v] - 2. If Glover’s algorithm is used on this graph, then
{1, 2,3,4,5,7, 12} defines a subset of A’ that can be matched with vertices
in B'. Further, this gives a maximum matching. Hence, MAXM(2) =
{1,2,3,4,5,7, 12};1(2) = 6;and T(2) = (. Observe that [MAXM(1)| is
the size of a maximum matching in the original convex bipartite graph. Also,
T(1) =@ and I(1) = A — MAXM(]).

We shall make two passes over the computation tree. The first pass begins
at the leaves and moves toward the root. During this pass, the MAXM, /, and
T sets for each node are computed. The second pass starts at the root and
progresses toward the leaves. In this pass, the MAXM set for each node is
updated so as to correspond to the set of A vertices matched by Glover’s
algorithm to the B vertices associated with that node.

Pass 1

In this pass, we make extensive use of the parallel algorithm developed in
[1] for the case when all the s,’s are the same. For our purposes here, it is
sufficient to know the sequential algorithm (FEAS of [1]) that this parallel
algorithm is based on. This sequential algorithm is given in Fig. 2.6. For
convenience, this has been translated into the graph language used here. The

192 DEKEL AND SAHNI

line procedure FEAS(n, u, v)

//Find a maximum matching of vertices in A into the B set [, v]. For every vertexi € A,

si = u.ll

global MAT(1 : n); set A; integer n, u, v, i, j

sort A into nondecreasing order of A;

MAT(: n) < 0//initialize//

j<u

for i < 1tondo
case
:j > v: return(j) //all vertices in B matched//
J = hi: liselect i/l j «—j + 1, MAT(i) « 1
end case

10 end for

11 return(j)

12 end FEAS

O 00 IO\ WA W=

FIGURE 2.6

parallel version of this algorithm has complexity O (log n) and uses n/log n
PEs [1].

An examination of Glover’s algorithm reveals that it performs exactly as
does procedure FEAS when the restrictions and simplifications applicable to
FEAS are incorporated into it.

Hence, for a leaf node of the computation tree, the MAXM set may be
obtained by a direct application of procedure FEAS (or its parallel equiv-
alent). For example, for node 4 of Fig. 2.4, we have A = M#4) =
{2,3,4,7}; hyb =4; hy =3; hy =4; h; = 2; u = 1; and v = 3. Using
FEAS (observe that this algorithm yields the same results regardless of
whether the A; values or the modified values A/ of Fig. 2.5 are used), we
obtain MAXM(4) = {7, 3, 2}. Note that MAXM consists of exactly those
vertices i with MAT(i) = 1. I() consists of exactly those vertices i with
MAT() = @ and h; =< v. The remaining vertices form 7(). The matched set
MAXM, transferred set T, and infeasible set I for each of the leaves in our
example are shown in Fig. 2.7. Null sets are not explicitly shown. So, for
node 4, I(4) = @; T(4) = {4}; and MAXM(4) = {7, 3, 2}. The sets are or-
dered by A;.

For a nonleaf node P, the MAXM, I, and T sets may be obtained by using
the MAXM, I, and T sets of the children of P. Let L and R, respectively, be
the left and right children of P. To determine MAXM(P), we first use
procedure FEAS with u = uz and v = vy ([ug, vg] is the subset of B associ-
ated with the right child R of P). The A set consists of 7(L) U MAXM(R).
Since both 7'(L) and MAXM(R) are already sorted by #;, the sort of line 2 of
FEAS can be replaced by a merge. Let S be the subset of T(L) U MAXM(R)
that has MAT() = 1 following the execution of FEAS. The following the-
orem establishes that MAXM(L) U § is a maximum cardinality subset of
M (P) that may be matched with vertices in [u, v] - P. Hence, MAXM(P) =
MAXM(L) U S. Following the determination of S, MAXM(L) and S are
mesged to obtain MAXM(P) in nondecreasing order of A;.

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 193

Q]

i |7)32 |41 |5|9]12| 8 |14|10]11 6 |13

[4,8] [9,11] [12,13]

FIG. 2.7. Results of first pass.

THEOREM 2.1. MAXM(L) U S as defined above is a maximum cardi-
nality subset of M (P) that may be matched with vertices in [u, v] + P using
algorithm MATCH.

Proof. The proof is by induction on the height of the subtree of which P
is the root (a tree consisting of only a root has height 0). If this height is 1,
then MAXM(L) and MAXM(R) are maximum cardinality subsets of M (L)
and M (R) that can, respectively, be matched by Glover’s algorithm with
vertices in [u, v] - L and [u, v] - R. If this distance is greater than 1, then
MAXM(L) and MAXM(R) satisfy this maximum cardinality matching re-
quirement by induction.

As far as node P itself is concerned, we see that only vertices in M (L) are
candidates for matching with vertices in [u;, v;] (recall that for vertices in
M (R), the s; value exceeds v;). Furthermore, when Glover’s algorithm is used
with the A set being M (P) and the B set being [u;, vg] = [u, v] - P, vertices
in B are considered in the order u;, u, + 1, . . ., vy, ug, . . ., vg. Hence,
MAXM(L) is precisely the subset of M (P) that gets matched with vertices in
[ur, o).

The candidates for the remaining vertices in B, i.e., [ug, vg], are clearly
T(L) U M(R). From the way Glover’s algorithm works, it is also clear that
the vertices of 7(L) U M (R) that will get matched to [ug, vg] are a subset of
T(L) UMAXM(R). Let this subset be S’. We wish to show that S is a
legitimate choice for S'. First, we show that S represents a feasible matching.
Then, we shall show that § is in fact selectable by Glover’s algorithm.

We know that MAXM(R) can be matched into [ug, vg]. Let Z be any such
matching. Since S is selected by FEAS, we know that every vertex in S can

194 DEKEL AND SAHNI

be paired with a distinct vertex in [ug, vz] in a such a way that no vertex j in
S is paired with a vertex with index greater than A;. Consider a pairing W that
meets this condition. Now suppose that some vertex j in S is paired with a
vertex g in [ug, vg] with index less than s;. Clearly, j must be a member of
MAXM(R) (as all vertices in T'(L) have an s value less than ug). Suppose that
Jj is matched to j; in Z. So, ¢ < j;. If j; is free in W, then the pairing of j in
W may be changed from g to j;. If j; is not free, then suppose it is matched
to j,. From the restriction on W, it follows that ¢ < j; = h;,. If j, € T(L),
then j, may be paired with g and j with j; (since ¢ < ji, 5, < g < h;,). If
Jj» € MAXM(R), then suppose that j, is matched to j; in Z. It is easy to see
that j; # j,. If ¢ = j; or js is free in W, then we may pair j with j; and j, with
Js. If g is in the interval [s;,, h;,], then we may pair j with j, and j, with g. If
g is not in this interval, then since g < h;,, ¢ < s;, = j3. Note that the
condition ¢ < j,;4 is preserved. This is needed in case j,;1» € T(L). Now,
let j, be the vertex paired with j; in W. It should be clear that we can continue
in this way and modify W so that j is paired with j,, j, with js, j, with js, etc.
In the new pairing, there is one fewer vertex of S that is paired with a vertex
with a smaller s value.

Repeating the above construction several times, W can be transformed into
a matching such that every vertex j € S is matched to a vertex g in [ug, vg]
such that s; = g = h;. Hence, S represents a feasible matching.

Let S’ (as defined earlier) be the subset of MAXM(R) U T (L) matched by
Glover’s algorithm to the vertex set [ug, vg]. We shall now proceed to show
that S is a valid choice for S'. Let Z be any matching of MAXM(R) into
[ug, vr]. Let Y be a matching of S’ in which all vertices in MAXM(R) N S’
are matched to the same vertex in [ug, vg] as in the matching Z. Let W be a
corresponding matching for S. The existence of the matchings Y and W is a
consequence of the construction used to show the feasibility of S.

From the definition of S', it follows that S’ ¢ S. Also, from the working
of FEAS, it follows that § ¢ S'. Letj € S be a vertex with least /; such that
J & S'. If no such j exists, then S = §'. Assume that j is matched to ¢ in W.
If g is free in Y, then S’ cannot be of maximum cardinality. So, letp € S’
be matched to ¢ in Y. By definition of Y and W, p & S. Also, from the order
in which FEAS considers vertices, h, = h; (as otherwise, FEAS would con-
sider p before j and select p for §). Hence, S’ U {j} — {p} is also a subset
selectable by Glover’s algorithm. (Since h, = h;, by ensuring j < p,
Glover’s algorithm will be forced to match j before p.) S’ U {j} — {p}
agrees with S in one place more than does S'.

By repeating this interchange process, S’ may be transformed into S with
the result that S is also a maximum cardinality subset of MAXM(R) U T(L)
that is selectable by Glover’s algorithm for matching in [ug, vg].

Hence, MAXM(L) U S is a maximum cardinality subset of M (P) select-
able by Glover’s algorithm for matching in [«, v] - P.H

Once MAXM(P) is known, T(P) and I (P) are easily computed. Actually,

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 195

as I(P) is never used, we may omit its computation. Figure 2.7 shows the
MAXM, I, and T sets (except when empty) for all nodes in our example.

Pass 2

In the second pass, for each vertex P of the computation tree; we compute
a set MAXM'(P) which represents the set of A vertices matched by Glover’s
algorithm with the set [u, v] - P. With respect to the matching shown by solid
lines in Fig. 2.1, we see that if P is the root, then MAXM'(P) = {1, 2, 3,
4,5,7,8,9, 10, 11, 12, 14}; if P is node 3 of the computation tree, then
MAXM'(P) = {8, 9, 10, 11, 14}.

If P is the root node, then MAXM'(P) = MAXM(P), by definition of
MAXM(P). Let P be any nonleaf node for which MAXM'(P) has been
computed. Let L and R be the left and right children, respectively, of P. Let
[u, v] - L = [ug, v;]and [u, v] - R = [ug, vg]. LetV = {j|j € MAXM'(P)
and 5; < vg}. Let W be the ordered set obtained by merging together V and
MAXM(L) (note that both V and MAXM(L) can be maintained so that they
are in nondecreasing order of A; and that W is also in nondecreasing order of
h). MAXM'(L) consists of the first min {| W|, v, — u, + 1} vertices in W.
The correctness of this statement may be established by induction on the level
of P. MAXM'(R) is readily seen to be MAXM'(P) — MAXM'(L). Figure 2.8
shows the MAXM/'() sets for all the vertices in the computation tree of our
example.

i| 7 312|415 9 |12 8 |14|10 |11

8 1 1 1 1 4 4 9 4 9 |12|112| 9

h 2 3|14|4 |8 (10(10|11 1112|1313

[1,13]
Q' / \ Q'

i|7|3|2|4|1]5]12 i| 9|8 |14]10]|11
700 [0 W I O B/ s. |99 |12]|12|9
1 1
hy| 2|3 |4]4]8]1011 h, |10 |11 |12 |13 |13
[1,8] [9,13]
Q' Q' Q' Q'
i|7)3]|2 i 4|1 |5]12 i 9|8 |11 i | 14|10
s. |1 (1|1 sl 1|4 |44 s | 91919 &, | 12 112
1 1 1 1 B
h,| 21 2]4 h, | 4| 8 |10|11 h, |10 |11 |13 h, |12 |13
1 o 1 : 1
(1,3] [4,8] [9,11] (12,13

matching={(7,1),(3,2),(2,3), (4,4),(1,5),(5,6),(12,7),(9,9),(8,10)
(11,11),(14,12),(10,13)}

FIG. 2.8. Second pass.

196 DEKEL AND SAHNI

From the MAXM'() sets of the leaves, the matching is easily obtained. If
P is a leaf, and [u, v] - P = [a, b], then the first vertex in MAXM'(P) is
matched with a, the second with a + 1, etc. (note that MAXM'(P) is in
nondecreasing order of 4;). The matching for our example is also given in Fig.
2.8.

Complexity Analysis

The initial ordering of A by s; and within s; by k; can be done in O (log? n)
time using n/2 PEs [11, 12]. During the first pass, the computation of
MAXM() requires the use of FEAS and a merge. The use of FEAS (without
the sort) takes O (log n) time and requires O (| M (P)|/log|M (P)|) PEs [1].
The merge at node P takes O (log n) time with | M (P)|/2 PEs. Since MAXM
can be computed in parallel for all nodes on the same level of the computation
tree, O (log n) time is needed per level. The total time for the first pass is
O (log? n) and n/2 PEs are needed. Pass 2 requires only some merging per
node. The total cost of this pass is also O (log® n) and n/2 PEs suffice.

Hence, the overall complexity of our parallel algorithm for maximum
matching in convex bipartite graphs is O(log? n). The PE requirement is
O(n).

Another complexity measure often computed for parallel algorithms is the
effectiveness of processor utilization (EPU) (see [1, 2, 14]). For any problem
P and parallel algorithm A, this is defined as follows:

complexity of fastest “known” sequential algorithm for P

EPU(P, A) = :
() complexity of A * number of PEs used by A

For our algorithm, we have an EPU that is Q((n + mA (m))/ (log? n * n))
(recall that m = | B|).

3. APPLICATIONS TO SCHEDULING

We have already seen one application of matchings in convex bipartite
graphs to scheduling. This application was to a problem that is actually
isomorphic to the matching problem: viz., find the maximum number of unit
time jobs from J = {(r;, d)|1 < i =< n, r; and d; are natural numbers} that
can be scheduled on a single machine such that no job is scheduled before its
release time r; or after its due time d;. In this section, we shall look at three
other scheduling problems that can be solved in an efficient manner using the
parallel matching algorithm developed in previous section.

3.1 Scheduling to Minimize the Maximum Cost

In this problem, we are given n unit time jobs. Associated with each job
is a release time r; (which is a natural number) and a nondecreasing cost

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 197

functionc¢;(),1 =i =< n.LetS = (s, 52, . . . , 5,) be aone-machine sched-
ule for the n jobs. s; denotes the start time of job i. Let g; be as defined below:

ci(sy) S = I
qi =

0 s,-<r,-.

The cost of S is defined to be max {g;}. We wish to find a schedule with
minimum cost.

As pointed out by Rinnooy Kan [13], this problem may be solved by first
determining the finish time of a minimum finish time schedule for the n jobs.
If the n jobs are already in nondecreasing order of release times r;, then a
minimum finish time schedule has start times s; given by

S1 = nNn

3.1)

s; = max {r;, si-) + 1}.

This equation is a special case of Eq. (6.1) of [1] and so we may use
algorithm PADMIS of [1] to obtain the s;’s. The finish time, C*, of a
minimum finish time schedule for the n jobs is s, + 1.

For simplicity, let us assume that r, = 0. Once C* has been computed, a
schedule that has minimum cost may be obtained by constructing the convex
bipartite graph, G, with A =1{1,2,...,n} and B=1{0,1, ...,
C* — 1}. There is an edge from i in A to’j in B iff j = r,. (A represents the
jobs and j € B represents the time slot [j, j + 1].) A cost ¢;(j) is associated
with edge (i, j).

From our choice of C*, it follows that the graph just constructed has a
maximum matching M of size n. Every such matching defines a feasible
schedule. A matching for which the maximum edge cost is minimum defines
the optimal matching for our scheduling problem.

As suggested by Rinnooy Kan [13], this matching can be obtained by
performing a binary search on the O (n?) edge costs in G. At each iteration
of this binary search, all edges with cost greater than ¢ are deleted from G and
a maximum matching in the resulting convex bipartite graph G’ found. If this
matching is of size less than n, then there is no matching in G with maximum
edge cost no more than ¢, otherwise there is. The time complexity of Rinnooy
Kan’s scheme is readily seen to be O (nA(n) log n).

Complexity Analysis

The initial sort by release times can be done in O (log” n) time using O (n)
PEs [12]. C* can be found in O (log n) time using n PEs and the algorithm
of [1]. Each iteration of the binary search requires the construction of G’ and
the solution of a matching problem. The first of these can be done in O (log* n)
time using O (n?/log” n) PEs. The second task takes O (log> n) time and O (n)

198 DEKEL AND SAHNI

PEs. The total time needed to determine the matching with minimum cost is
therefore O (log® n) and the number of PEs needed is O (n?/log? n). Hence,
the overall complexity of the parallel scheduling algorithm is O (log® n). The
number of PEs used is O (n*/log? n). The EPU of our parallel algorithm is
Q(nA(n) log n/(log® n * n?/log* n)) = Q(A(n)/n).

3.2. Job Sequencing with Release Times and Deadlines

Once again, each job has a processing requirement that is one unit. How-
ever, this time there is a release time r;, deadline d;, and weight w; associated
with job i. The r;’s and d;’s are natural numbers. No job may be scheduled
before its release time. We are interested in obtaining a maximum weight
subset of the n jobs such that all jobs in this subset can be scheduled on a
single machine in such a manner that none starts before its release time or
finishes after its deadline.

This problem can be solved efficiently by a sequential greedy algorithm.
Jobs are considered in nonincreasing order of the weights. If the job, i,
currently being considered can be scheduled together with all the others so far
scheduled such that no job violates its release time or deadline, then job i is
in the optimal schedule. Otherwise, it is not. The sequential complexity of
this algorithm is O (n?) [7].

For the parallel algorithm, we resort to a convex bipartite graph formu-
lation. The A set represents the 7 jobs; so, |A| = n. The B set represents time
slots. Leta = min {r;}and b = max {d;}. B={a,a+ 1,...,b— 1}.In
the convex bipartite graph corresponding to the scheduling problem, there is
anedge fromiinAtoj € Biffr;, = j < d,. The weight of each edge incident
on vertex i € A is w;. We wish to find a matching M for which the sum of
edge weights is maximum.

Our parallel algorithm for this is based on the greedy sequential algorithm
for job sequencing with release times and deadlines. Define the binary re-
lation R on the weights w; as follows:

wiRw; iff w;, <w;, or (w;=wjandi > j).

Let G; be the convex bipartite graph obtained from G by deleting all edges
with weight w; such that w; R w;. Clearly, the following determines whether
or not i is in the maximum weight matching:

(a) Determine the size of the maximum cardinality matching in G;. Let
this be s;.

(b) Delete all edges incident on vertex i € A of G;. Determine the size
of the maximum cardinality matching in the new graph. Let this be s';.

(c) i is in the maximum weight matching iff s; = s/ + 1.

So, each vertex can determine, in parallel, whether or not it is in the
maximum weight matching. To avoid read conflicts, we need to make n
copies of the graph G. This can be done in O (log n) time using O (n?) PEs.

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 199

To see this, observe that as G is a convex bipartite graph, it can be represented
in O (n) space. So, n PEs can make one copy of G in O (n) time. Next, 2n PEs
are used to make a copy of each of these copies. Now we have four copies
of G. At step log n, n?/2 PEs make one copy of each of the existing n/2
copies in O (1) time. G; can be constructed in O (1) time using O (n) PEs per
vertex i. Then, steps (a), (b), and (c) above can be performed in O (log” n)
time using a total to O (n?) PEs. (Note that only pass 1 of the parallel convex
matching algorithm need be executed.) The total time needed to determine the
subset of A in the maximum weight matching is therefore O (log’ n).

Once we have obtained the above subset of A, the actual matching can be
determined by deleting from G all vertices that are not in this subset. A
maximum cardinality matching on the resulting graph yields the desired
matching with maximum weight. This corresponds to an optimal schedule for
the scheduling problem. It takes an additional O (log® n) time to determine
this matching.

The complexity of the parallel algorithm is O(log? n) and its EPU is
Q(n?/(log? n * n?) = Q(1/log? n).

ExamMpLE 3.1. Figure 3.1 gives an example of a job set. Let
H; = {j|iRj}. Figure 3.2 gives the H;s, s;s, and s/’s, and s’s i’s for our
example.

3.3. Preemptive Scheduling with Precedence Constraints

Let J be a set of n unit time jobs. Let P be a precedence relation on J. For
i € Jandj € J, iPjiff i must be completed before j can commence. We may
assume that P is a partial order. Hence, P may be represented as a directed
acyclic graph (dag) as in Fig. 3.3 (strictly speaking, P is the transitive closure
of this graph). The directed edge (i, j) means that ; must be completed before
Jj can start (i.e., iPj). We also assume that jobs have been indexed so that iPj
implies i < j. This is true of the indexing (of nodes) in Fig. 3.3.

Muntz and Coffman [10] have developed a level algorithm to obtain min-
imum finish time preemptive schedules for J (as above) when the number of
machines available is 2. Their algorithm also works for the case when the
processing times are mutually commensurable (rather than simply 1 unit). A
set of times {t,, t,, . . . , t,} is mutually commensurable iff each is a multiple

o
NN (SN

5055|6540 |70 20|60 |80|60]| 30|85

e

FIGURE 3.1

=
I

{243,557 58,9511 = {3,5,8,11}

7
s. =6 8,'"=5 Job 1l is in s. =5 s, ' =4 Job 7 is in
i : e i i —_—
{3,5,7,8,9,11} H8 = {11}
s, =5 s,'"=5 Job 2 is out s, =2 s,'=1 Job 8 is in
i i Sl e op Bt i i 20D o 15 A0
{5,8,11} H9 = {3,5,7,8,11}
s. =4 s.' =3 Job 3 is in s, =5 s,'=5 Job 9 is out
1 = — i i, _c =
{1,2,3,5,7,8,9,11} HlO= {1,2,3,4,5,7,8,9,11}
s, =6 s.'=6 Job 4 is out s, =6 s,"=6 Job 10 is out
i i —_ e i i —_—
{8,11} H .= {p}
= ¥ = s

s; =3 s,' =2 Job5isin 8y =1’ =0 Jobllisin
{1,2,3,4,5,7,8,9,10,11}
s, =7 s,"=6 Job 6 is in
i i et

FIGURE 3.2

FIGURE 3.3
200

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 201

procedure SCH
L < maximum level
S; < all jobs in J with level =i, 0 =i =L
for k < L to 1 do
if | S¢| = 1 then find the largest j such that j < k and S; contains a job all of whose
predecessors are in Sz, Sp—1, . . . , Sk+1-
If no such j exists then exit endif.
Let g be this value of j and let be the job in S, with the above property
Sq <S8 — {ry; Se < S U {r}
endif
endfor
preemptively schedule the jobs in each S; using McNaughton’s rule [9].
Jobs in S; precede those in Si—;.
end SCH

FIG. 3.4. The Muntz—Coffman Algorithm.

of some number w. In the case of mutually commensurable times, each job
is broken into a chain of jobs each requiring w units of processing. In this
section, we shall deal directly only with the case of unit time tasks.

Let G be the dag representation of the precedence relation P. A node in G
is terminal iff its out-degree is 0. The level of a node in G is the length of the
longest path from v to any terminal node. All terminal nodes have level 0. In
Fig. 3.3, the number outside each node is its level.

Muntz and Coffman’s [10] algorithm to obtain minimum finish time two-
machine schedules is given in Fig. 3.4. One observes that the objective of the
for loop of this algorithm is to minimize the number of sets S; with | S;| = 1.
This can be done in parallel as follows. Let L be the maximum level in the
precedence graph G. Let L; be the level of vertex i in G. Let D; be the length
of the longest path ending at i. Let H; = L — D,. The [L;, H,] pairs of each
vertex in our example are given in Fig. 3.3. Note that H; is the largest j such
that job i could possibly be in S; following the execution of the for loop in the
Muntz—Coffman algorithm.

Set 55 S4 53 S2 Sl S0
i 1 3 5 6 7 2 8 4 10| 9 11
Li 5 4 3 3 3 3 2 2 1 1 0
Hi 5 4 3 3 3 4 2 4 1 3 0
non
critical X X X
andidate] X X X X X
set

FIGURE 3.5

202 DEKEL AND SAHNI

A B new index
2 e5 0
4 4 1
9 2 3
1 A
0 5

FIG. 3.6. Convex bipartite graph.

A job i is said to be critical iff L; = H;. Only noncritical jobs are candidates
for displacement to other sets. Also, only those sets S, that initially have
exactly one critical job are candiates to receive a new job during the for loop.
Note that every S; must have at least one critical job. In Fig. 3.5, the
noncritical jobs have been marked with an X. Sets that are candidates to
receive a new job have also been marked with an X. Double vertical lines
mark set boundaries.

To determine the movement of noncritical jobs to candidate sets, we
construct a convex bipartite graph in which the A set consists of the noncritical
jobs while the B set consists of the candidate sets. There is an edge from
i€Atoj €Biff L, =j = H,;. For our example, the resulting graph is
shown in Fig. 3.6. We intend to use a maximum matching M in the graph
constructed above as follows: if (i, j) is an edge of the matching M, then job
i is moved to set S;; vertices of A that are not matched to any vertex in B
remain in their original set.

The maximum matching M is to be obtained from the convex bipartite
graph constructed above as follows:

(1) Reindex the vertices in B. The new index of vertex i € Bis L — i.
So, fori €A, s;=L —H;and h; =L — L,.

(2) Use Glover’s algorithm considering vertices in B in increasing order
of index.

LetS;, Si-1, . . ., So be the sets obtained by updating S;, S;—1, . . ., So
using the maximum matching above. These updated sets satisfy the following
properties:

(a) There is no job pair (i, j) such that iPjand i € S;, j € S} for a
=b.

(b) There is no partition of the job set J that satisfies property (a) and
has a smaller number of sets of size 1 than in S;, . . . , Sy.

For our example, the maximum matching M is {(2, 4), (4, 2), (9, 1)} (solid
lines in Fig. 3.7). So, §/ =S, i=0,1,2,5 Si{=1{56,7}; and
S4 = {3.2}. Properties (a) and (b) hold for our example.

The correctness of (a) follows from the indexing scheme imposed on the
jobs (viz., iPjimplies i < j) and the unique way in which Glover’s algorithm

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 203

FIGURE 3.7

works. Suppose that statement (a) is incorrect. Then, there exists a job pair
(i, j) such that iPj and i € S, j € S} and @ =< b. Since no such job pair
exists in Sz, . . ., Sp, it must be the case that job j is noncritical and is
matched to b (old indexing) in M (as only noncritical jobs can change sets and
no job moves to a set of smaller index). From the definition of L and H and
the knowledge that iPj, it follows that H; = L;,, H; =L; L, > L; and
H; > H;. If job i is critical, then it is the case that L; > H;. So, job j cannot
possibly be matched to a set b with A = b. Hence, we may assume that i is
also noncritical. Again, if i is not matched in M, then a > b as for a to be
less than or equal to b, it must be the case that L; < H,. But since L; > L;,
h; < h; and i must get matched to b before j can (see Glover’s alogrithm).
Hence, i and j must both be matched in M. i is matched to a and j to b. Hence,
a # b. If a < b then vertex b is considered before a (as its new index is
L—b < L—a). Since iPb, it must be the case that H; = b = L;. Also,
L; > L;implies that »; < h;. Hence, Glover’s algorithm will match i to b and
not j to b.

The truth of property (b) is established using the following reasoning. If
i € B is such that no vertex of A is matched to i in M, then |S/| = 1. To see
this, observe that S; has exactly one critical job. Every noncritical job in S; is
a candidate for matching with i € B. Thus, if no job is matched with i, then
all these noncritical jobs are matched elsewhere and |S/| = 1. It is readily
seen that if i € B is matched in M, then | S/ | > 1. Hence, the number of sets
of size 1 is minimized when a maximum matching is used.

Complexity Analysis

The steps in our parallel preemptive scheduling algorithm are:
(1) Determine L; and H;, 1 =i =< n
(2) Mark the noncritical jobs

204 DEKEL AND SAHNI

(3) Mark the candidate sets

(4) Construct the convex bipartite graph

(5) Find the maximum matching M

(6) Reassign matched jobs to their new sets

(7) Schedule jobs in the same set using McNaughton’s rule.

Step 1 = can be performed in O (log? n) time using the critical path algo-
rithm developed by Dekel, Nassimi, and Sahni [3]. This algorithm uses
O (n3/log n) PEs. The noncritical jobs can be identified in O(1) time using
n PEs. The sets Sy, . . . , S, may be obtained in O (log n) time by sorting on
L. This requires O (n?*) PEs. The candidate sets can be marked in O (log n)
time and the resulting convex bipartite graph may be constructed in an
additional O (1) time using n2 PEs. The matching requires O (log® n) time and
O (n) PEs while the reassigning takes O (1) time. A parallel implementation
of McNaughton’s rule appears in [1]. This has complexity O (log n) and uses
O(n/log n) PEs.

Hence, the overall complexity of our seven-step parallel algorithm for
preemptive scheduling is O (log” n). The number of PEs used is O (n°/log n).
Since the fastest sequential algorithm known for this problem (i.e., the
Muntz—-Coffman algorithm) has complexity O (n?), the EPU of our parallel
algorithm is O (n?/(log? n * n3/log n)) = O(1/(n log n)).

4. CONCLUSIONS

We have developed fast parallel algorithms for several versions of the
matching problem for convex bipartite graphs. In Section 2, we explicitly
considered the maximum cardinality matching problem. In Sections 3.1 and
3.2, we considered the problems of obtaining a maximum matching that
minimized the maximum weight edge used as well as one that maximized the
total weight of the used edges. Both these problems were discussed in con-
nection with the scheduling problems in which they naturally arose. Finally,
the maximum cardinality matching algorithm was again used to solve the
preemptive scheduling problem of Section 3.3 efficiently.

This paper has further enhanced the utility of the binary tree method of
Dekel and Sahni [2] for the design of parallel algorithms. It should also be
pointed out that while all of our complexity analyses have assumed the
availability of as many PEs as needed, our algorithms can be used when fewer
PEs are available. The complexity of each algorithm will increase by no more
than the shortfall in PEs. So if only half the number of PEs is available, then
the time needed will at most double (except for a possible constant increase
in overhead).

REFERENCES

1. Dekel, E., and Sahni, S. Parallel scheduling algorithms. Oper. Res. 31, 1 (1983), 24—-49.

2. Dekel, E., and Sahni, S. Binary trees and parallel scheduling algorithms. IEEE Trans.
Comput. C-32, 3 (March 1983), 307-315.

10.

11.

12.

13:

14.

PARALLEL MATCHING ALGORITHM FOR CONVEX BIPARTITE GRAPHS 205

. Dekel, E., Nassimi, D., and Sahni, S. Parallel matrix and graph algorithms. SICOMP 10,

4 (Nov. 1981), 657—675.

. Emde Boas, P. van. Preserving order in a forest in less than logarithmic time and linear

space. Inform. Process. Lett. 6 (1977), 80-82.

. Glover, F. Maximum matching in a convex bipartite graph. Naval Res. Logist. Quart. 14

(1967), 313-316.

. Jackson, J. R. Scheduling a production line to minimize maximum tardiness. Research

Rep. 43, Management Science Research Project, University of California, Los Angeles,
1955.

. Lageweg, B. J., and Lawler, E. L. Private communication. Cited in Lenstra, J. K.

Sequencing by Enumerative Methods. Mathematisch Centrum, Amsterdam, 1976, p. 22.

. Lipski, W., Jr., and Preparata, F. P. Efficient algorithms for finding maximum matchings

in convex bipartite graphs and related problems. Acta Inform. 15 (1981), 329-346.

. McNaughton, R. Sequencing with deadlines and loss functions. Management Sci. 6

(1959), 1-12.

Muntz, R. R., and Coffman, E. G., Jr. Optimal preemtive scheduling on two-processor
systems. IEEE Trans. Comput. C-18 (1969) 1014-1020.

Nassimi, D., and Sahni S. Bitonic sort on a mesh connected parallel computer. IEEE Trans
Comput. C-28, 1 (Jan. 1979), 2-7.

Preparata, F. P. New parallel-sorting schemes. /[EEE Trans. Comput. C-27, 7 (July 1978),
669-673.

Rinnooy Kan, A. H. G. Machine scheduling problems, classification complexity, and
computation. Nijhoff, The Hague, 1976.

Savage, C., Parallel algorithms for graph theoretic problems. Ph.D. thesis, University of
Illinois, Urbana, Aug. 1978.

	scan0001
	scan0002.pdf

