Bitonic Sort on a Mesh-Connected Parallel Computer

DAVID NASSIMI AND SARTAJ SAHNI

Abstract—An \(O(n) \) algorithm to sort \(n^2 \) elements on an Illiac IV-like \(n \times n \) mesh-connected processor array is presented. This algorithm sorts the \(n^2 \) elements into row-major order and is an adaptation of Batcher's bitonic sort. A slight modification of our algorithm yields an \(O(n) \) algorithm to sort \(n^2 \) elements into snake-like row-major order. Extensions to the case of a \(2 \times 2 \)-dimensional processor array are discussed.

Index Terms—Bitonic sort, complexity, mesh-connected parallel computer, parallel sorting, SIMD machine.

I. INTRODUCTION

Batcher's bitonic sort [2], [6, pp. 232–233, 237] is based upon his algorithm to sort a bitonic sequence into nondecreasing order. A sequence \(X = (x_1, x_2, \ldots, x_n) \) is said to be bitonic [2], [8] if either 1) there is an index \(i, 1 \leq i \leq N \), such that \(x_1 \leq x_2 \leq \cdots \leq x_i \geq x_{i+1} \geq \cdots \geq x_n \) or 2) the sequence can be shifted cyclically so that condition 1) is satisfied. Batcher's algorithm to sort a bitonic sequence \(X \) is to recursively sort the bitonic sequences \(X_{ODD} = (x_1, x_3, x_5, \ldots) \) and \(X_{EVEN} = (x_2, x_4, x_6, \ldots) \) and then perform the comparison-interchanges \(x_1 : x_2, x_3 : x_4, x_5 : x_6, \ldots \). During the comparison-interchange \(x_i : x_{i+1} \), \(x_j \) is replaced by the smaller of \(x_j \) and \(x_{j+1} \) and \(x_{j+1} \) becomes the larger of the two. Any sequence \(Y = (y_1, y_2, \ldots, y_n) \) may be sorted by recursively sorting \((y_1, y_2, \ldots, y_{n/2}) \) into nonincreasing order, \((y_{n/2+1}, \ldots, y_n) \) into nondecreasing order (or vice versa) and then sorting the bitonic sequence \((y_1, y_2, \ldots, y_n) \) into nondecreasing order using Batcher's method.

Bitonic sort has been adapted by Orcutt [7] and Thompson and Kung [9] for an \(n \times n \) mesh-connected parallel computer. The computer consists of \(N = n^2 \) identical processors configured in a manner similar to the Illiac IV machine [1]. The assumptions we shall be making on the model are as follows.

1) It is a SIMD type [4] machine. The \(N = n \times n \) identical processors may be thought of as positioned according to an \(n \times n \) array \(P(0:n-1, 0:n-1) \). Each processor \(P(i, j) \) is connected to its neighbor processors \(P(i+1, j), P(i, j+1), P(i-1, j), P(j+1, i) \), and \(P(i, j-1) \) if they exist. The end-around connections of the Illiac IV are not assumed here.

2) Each processor has three registers: one routing register \(R_s \) and two storage registers \(R_a \) and \(R_r \).

3) A register interchange instruction with time \(= \tau_r \). Each selected processor unconditionally interchanges the contents of two of its registers. (The same registers are used for all processors.) In our algorithm, only column-selectability and row-selectability of processors is needed.

4) A route instruction with time \(= \tau_r \). All processors route the contents of their \(R_s \) to their immediate neighbor in the same direction. Thus, this instruction simply shifts the entire \(R_s \)-array (end-off, zero-filled) unit-distance in one of the four directions up, down, left, or right.

5) A compare-interchange instruction with time \(= \tau_c \).

All processors do the (hardware) equivalent of the following statement:

\[
\text{If } \text{sign} (I, S) \ast (R_s - R_a) < 0 \text{ then interchange } (R_s, R_a)
\]

where \(I = \text{processor index} \) and \(S = \text{"pass number" of the algorithm. The function sign will be specified later. After a compare-interchange instruction, we shall refer to the element in } R_s \text{ as the } \text{"accepted" element (to be kept by the processor and the one in } R_a \text{ as the } \text{"rejected" element (to be routed back). Note that even though all processors carry out this instruction, only } N/2 \text{ of the processors would be doing "useful work." The result of the other half is "don't care."}

The sorting problem studied in [3], [7], and [9] is that of routing the contents of the \(n \times n \) routing registers to destination processors. Each data item is to be routed to a distinct processor. The processors are assumed indexed in some manner and the routing is such that the \(i \)-th processor is to contain the \(i \)-th smallest element, \(1 \leq i \leq N \). Three different indexing schemes have been considered by Thompson and Kung [9]: row-major, shuffled row-major, and snake-like row-major. In row-major order, the index \(i \) of processor \(P(i, j) \) is \(i \times n + j \) (i.e., processors are indexed left to right, top to bottom). In shuffled row-major, the index of a processor is obtained by shuffling its row-major index. For example, if the row-major index in binary is \(b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 \) then its shuffled index is \(b_1 b_3 b_5 b_7 b_2 b_4 b_6 b_8 \). Snake-like row-major index is obtained by indexing the processors by row (as in row-major). Processors on even rows are indexed left to right while those on odd rows are indexed right to left (recall that rows are numbered 0 through \(n - 1 \)).

Thompson and Kung [9] present fast parallel algorithms for sorting into snake-like row-major and shuffled row-major order. For snake-like row-major order, they present an \(s^2 \)-way merge algorithm requiring \(6n + O(n^{2.5} \log n) \) routing steps and \(n + O(n^{2.5} \log n) \) comparison-
interchanges. Thus, the time needed to sort \(n^2 \) elements into
snake-like row-major order is \((6n + 0(n^{2.3} \log n)r_r + (n + 0(n^{2.3} \log n)r_c)\) time. Following a sort into snake-like row-
major order the elements may be rearranged into row-major
order by reversing the order of elements in odd numbered
rows. The additional time needed for this is \((2(n - 1)r_r +
0(\log n)r_r)\), Thompson and Kung also analyze bitonic sort for
shuffled row-major order. Their algorithm takes \((14(n - 1) - \log n)r_c + (2 \log^2 n + \log n)r_r\) time. Their
algorithms require each processor to have only two reg-
isters. They also point out that if \(n \times n \) elements have
already been sorted by some index function, and if each
processor can store \(n \) elements, then the \(N = n^2 \) elements
can be sorted with respect to any other index function using
an additional \(4(n - 1)r_c \) units of time. Orcutt [7] analyzes
bitonic sort for the case of row-major order. His algorithm
takes \(0((n \log n)r_r + (\log^2 n)(r_c + r_r)) \) time to sort \(n^2 \)
elements.

In this paper we shall obtain a different adaptation of
bitonic sort for row-major ordering. Our bitonic sort algo-
rithm will require \((14(n - 1) - \log n)r_r + (2 \log^2 n +
\log n)r_c + (4.5 \log^2 n + 1.5 \log n)r_r\) time. If we include the
register interchanges needed by the algorithm of [9], the time
for that algorithm becomes \((14(n - 1) - \log n)r_r + (2 \log^2 n +
\log n)(r_c + 2r_r)\). Hence, our algorithm for row-
major order is almost as fast as that of Thompson and Kung
[9] for shuffled row-major order. Our adaptation is, of
course, faster than that of Orcutt [7] by a factor of \(0(\log n) \).
However, the algorithm uses more routes and interchanges
than does the \(s^2 \)-way merge algorithm of [9] followed by an
odd-even transposition sort. The importance of the algo-
rithm developed here lies in the fact that bitonic sort is faster
than \(s^2 \)-way merge sort for \(n \leq 512 \) [9]. Hence, while \(s^2 \)-way
merge followed by an odd-even transposition sort will be
faster than our algorithm for large \(n \), it will not be so for
smaller (and perhaps more practical) values of \(n \). Secondly,
[9] states that the row-major indexing scheme is "decidedly"
nonoptimal for bitonic sort. Our adaptation shows that this
statement is inaccurate. Finally, it is worth noting that every
sorting algorithm for a mesh connected machine must result
in at least \(4(n - 1) \) routes in the worst case [9]. Hence, our
algorithm (as well as those of [9]) is optimal to within a
matrix multiplication on a machine model similar to that
used here.

In Section II, we present our algorithm, and also specify
the sign function to be used in comparison-interchange. In
Section III, we extend our algorithm to the case of a
j-dimensional array processor.

II. ROW-MAJOR BITONIC SORT

Our row-major bitonic sort algorithm is specified as a
series of subalgorithms in algorithmic notation. In analyzing
the algorithms, we shall count only \(N_r \), \(N_h \), and \(N_w \) which
are respectively the number of routes, register interchanges,
and comparison-interchange steps. The analysis will assume
that the number of elements involved is a power of 2. All
logarithms throughout this paper are in base 2.

A. Row Merge

Our first subalgorithm, \(\text{row-merge}(K) \), sorts a bitonic
sequence of size \(K \). The \(K \) elements are in \(K \) adjacent
processors on one row of the \(n \times n \) array.

procedure \(\text{row-merge}(K) \)

1) Let \(P_1, \ldots, P_K \) be the processors corresponding to
 the elements
2) if \(K = 1 \) then return
3) shift elements from \(P_{K/2+1}, \ldots, P_K \) respectively to
 \(P_1, \ldots, P_{K/2} \)
4) perform a comparison-interchange on \(P_1, \ldots, P_{K/2} \)
5) shift rejected elements from \(P_1, \ldots, P_{K/2} \) respectively
to \(P_{K/2+1}, \ldots, P_K \)
6) invoke in parallel, \(\text{row-merge}(K/2) \) for \(P_1, \ldots, P_{K/2} \)
 and \(P_{K/2+1}, \ldots, P_K \) (note that this is not a
 recursive call but simply a go to step 1 with \(K \)
 updated).

end \(\text{row-merge} \)

The analysis for \(\text{row-merge} \) is

\[
N^r_r(K) = \begin{cases}
K + N^r_r(K/2) & \text{if } K > 1 \\
0 & \text{if } K = 1
\end{cases}
\]

\[
N^r_c(K) = \begin{cases}
1 + N^r_c(K/2) & \text{if } K > 1 \\
0 & \text{if } K = 1
\end{cases}
\]

If we assume all elements to initially and finally be in the
routing registers then, preceding Step 3, elements in \(P_1, \ldots,
P_{K/2} \) have to be transferred to register \(R_r \). Following Step 5,
elements from \(R_r \) in \(P_1, \ldots, P_{K/2} \) have to be transferred to \(R_c \).
Hence

\[
N^r_r(K) = 2N^r_r(K).
\]

Solving these recurrences, we get (recall \(K \) is a power of 2)

\[N^r_r(K) = 2K - 2; \ N^r_c(K) = \log K \]

and

\[N^r_c(K) = 2 \log K. \]

B. Column Merge

Procedure \(\text{column-merge}(K) \) is identical to \(\text{row-
merge}(K) \) except that it sorts a bitonic sequence of \(K \)
elements which are in \(K \) adjacent processors on one column
of the \(n \times n \) array. The analysis is identical to that for \(\text{row-
merge} \). We shall use \(N^c_r(K), N^c_h(K), \) and \(N^c_w(K) \) to denote
the counts.

C. Vertical Merge

Procedure \(\text{vertical-merge}(J, K) \) sorts into either nonin-
creasing or nondecreasing row-major order a \(J \times K \)
array which is made up of two vertically aligned \(J/2 \times K \)
arrays. One of these is in nondecreasing row-major order and
the other is in nonincreasing row-major order.

procedure \(\text{vertical-merge}(J, K) \)

1) for all columns in parallel do \(\text{column-merge}(J) \);
2) for all rows in parallel do
 ROW_MERGE(K);
end VERTICAL_MERGE

An example of vertical merge is illustrated in Fig. 1. An arrow indicates a compare-interchange. The head of an arrow points to the processor which retains the larger element.

The correctness of VERTICAL_MERGE may be established by considering the sequence of comparison-interchanges that take place during the bitonic sort of a bitonic sequence \(X = \langle x_1, x_2, \ldots, x_p \rangle \). Unfolding the recursion, we see that if \(p \) is a power of 2 then comparison-interchanges take place in the order

compare-interchange elements \(p/2 \) apart
compare-interchange elements \(p/4 \) apart
compare-interchange elements \(p/8 \) apart

compare-interchange elements 1 apart.

VERTICAL_MERGE begins with a bitonic sequence of \(J \times K \) elements in row-major order. If we look at Step 1 then the following sequence of comparison-interchanges takes place:

compare-interchange elements \(JK/2 \) apart
compare-interchange elements \(JK/4 \) apart

compare-interchange elements \(K \) apart.

Finally, in Step 2 the following sequence is performed:

compare-interchange elements \(K/2 \) apart
compare-interchange elements \(K/4 \) apart

compare-interchange elements 1 apart.

Hence, VERTICAL_MERGE is identical to bitonic sort and so must correctly sort the \(J \times K \) bitonic array. The analysis for VERTICAL_MERGE is

\[
N^{c}_1(J, K) = N^{c}_0(J) + N^{c}_0(K) = 2(J + K) - 4
\]
\[
N^{c}_1(J, K) = N^{c}_0(J) + N^{c}_1(K) = \log(JK)
\]
\[
N^{c}_1(J, K) = N^{c}_1(J) + N^{c}_1(K) = 2 \log(JK).
\]

D. Horizontal Merge

In this section we give an algorithm to sort a \(J \times K \) array which is made up of two horizontally aligned and adjacent \(J \times K/2 \) arrays. One of these is already sorted in nondecreasing row-major order while the other is in nonincreasing row-major order. But first we give an algorithm, TWO_COLUMN_MERGE, to sort a bitonic sequence \(< a_0, a_1, \ldots, a_{2^i-1} > \) initially loaded in a column of \(J \) processors \(< P_0, P_1, \ldots, P_{J-1} > \) such that \(P_i \) contains \(a_i \) and \(a_{i+J}, 0 \leq i < J \).

If the sorted sequence is \(< b_0, b_1, \ldots, b_{2^i-1} > \) then at termination, processor \(P_i \) contains elements \(b_{2i} \) and \(b_{2i+1} \).

procedure TWO_COLUMN_MERGE(J)
1) Let \(P_0, P_1, \ldots, P_{J-1} \) be the \(J \) processors
2) Compare-interchange the elements in each processor
end TWO_COLUMN_MERGE

3) if \(J > 1 \) then
 a) Exchange the rejected elements of \(P_0, \ldots, P_{J/2-1} \) with the accepted elements of \(P_{J/2}, \ldots, P_{J-1} \);
 b) In parallel perform TWO_COLUMN_MERGE(J/2) on the processors \(P_0, \ldots, P_{J/2-1} \) and \(P_{J/2}, \ldots, P_{J-1} \);
end TWO_COLUMN_MERGE

Fig. 2 illustrates the working of TWO_COLUMN_MERGE on an example.

The correctness of TWO_COLUMN_MERGE may be established using an argument similar to that used for VERTICAL_MERGE. Analyzing the number of steps, we obtain

\[
N^c_1(J) = \begin{cases}
 J + N^c_1(J/2) & \text{if } J > 1 \\
 0 & \text{if } J = 1
\end{cases}
\]
\[
= 2J - 2
\]
\[
N^c_1(J) = \begin{cases}
 1 + N^c_1(J/2) & \text{if } J > 1 \\
 1 & \text{if } J = 1
\end{cases}
\]
\[
= 1 + \log J.
\]

Register interchanges are needed in Step 3a) to exchange rejected and accepted elements. This can be done with three register interchanges: first move the rejected elements on \(P_{J/2}, \ldots, P_{J-1} \) to \(R \); next route the rejected elements from \(P_0, \ldots, P_{J/2-1} \) to \(P_{J/2}, \ldots, P_{J-1} \); now interchange between \(R \) and \(R \) on \(P_{J/2}, \ldots, P_{J-1} \); route from \(P_{J/2}, \ldots, P_{J-1} \) to \(P_0, \ldots, P_{J/2-1} \); finally move from \(R \) to \(R \) on \(P_{J/2}, \ldots, P_{J-1} \). Hence

\[
N^c_1(J) = \begin{cases}
 3 + N^c_1(J/2) & \text{if } J > 1 \\
 0 & \text{if } J = 1
\end{cases}
\]
\[
= 3 \log J.
\]

We are now ready for the horizontal merge algorithm.

procedure HORIZONTAL_MERGE(J, K)
1) Let the \(K \) columns be \(C_1, C_2, \ldots, C_K \)
2) Move in parallel elements from the \(J \) processors in each of the columns \(C_{K/2+1}, \ldots, C_K \) to the corresponding processors in the columns \(C_1, C_2, \ldots, C_{K/2} \) respectively
3) For each of the columns \(C_1, C_2, \ldots, C_{K/2} \) perform in parallel, TWO_COLUMN_MERGE(J)
4) Move, in parallel, the rejected elements back to the processors in \(C_{K/2+1}, \ldots, C_K \)
5) if \(K > 2 \) then invoke in parallel ROW_MERGE(K/2) for each of the \(2J \) rows of size \(K/2 \) // note: \(2J \) rows, each containing \(K/2 \) adjacent processors, are obtained by splitting each of the original \(J \) rows into two. //
end HORIZONTAL_MERGE
Figs. 3 and 4 illustrate the working of HORIZONTAL_MERGE. The correctness of the algorithm follows from an argument similar to that used for VERTICAL_MERGE.

The number of routing steps is given by

\[N^H_r(J, K) = K/2 + N^I_r(J) + K/2 + N^R_r(K/2) \]
\[= 2(J + K) - 4 \]

For the number of comparison-interchanges, we get

\[N^I_r(J, K) = N^I_r(J) + N^R_r(K/2) + 2 \]

Substituting, we get

\[N^I_r(J, K) = 3 \log J + 2 \log K \]

The number of register interchanges is

\[N^R_r(J, K) = N^I_r(J) + N^R_r(K/2) + 2 \]

where the 2 comes from Steps 2 and 4.

Having defined the subalgorithms, we now give the main procedure, sort, that will sort \(n^2 \) elements into nondecreasing row-major order. This algorithm also defines a pass number \(S \) which will be used (as explained in the next section) to determine how comparison-interchanges are to be performed.

procedure sort\((n, n)\)
1. \(K \leftarrow S \leftarrow 1 \)
2. **while** \(K < n \) **do**
 a) Consider the \(n \times n \) processor array as composed of many adjacent \(K \times 2K \) subarrays
 b) do in parallel for each \(K \times 2K \) array HORIZONTAL_MERGE\((K, 2K)\)
 c) \(S \leftarrow S + 1 \)
 d) Consider the \(n \times n \) processor array as composed of many adjacent \(2K \times 2K \) subarrays
 e) do in parallel for each \(2K \times 2K \) array VERTICAL_MERGE\((2K, 2K)\)
 f) \(S \leftarrow S + 1; K \leftarrow 2 \times K \)
end
end sort

The total number of routing steps is

\[N^I(n, n) = N^I(n/2, n/2) + N^H_r(n/2, n) + N^R_r(n, n) \]
\[= N^I(n/2, n/2) + 7n - 8, \quad n > 1 \]

and

\[N^I(1, 1) = 0. \]

Hence, \(N^I(n, n) = 14(n - 1) - 8 \log n. \) The number of comparison-interchanges is

\[N^c(n, n) = N^c(n/2, n/2) + N^I_r(n/2, n) + N^R_r(n, n) \]
\[= N^c(n/2, n/2) + 4 \log n - 1 \]
\[= 2 \log^2 n + \log n. \]

The number of register-interchanges is

\[N^r(n, n) = N^r(n/2, n/2) + N^I_r(n/2, n) + N^R_r(n, n) \]
\[= N^r(n/2, n/2) + 5 \log n - 3 + 4 \log n \]
\[= N^r(n/2, n/2) + 9 \log n - 3 \]
\[= 4.5 \log^2 n + 1.5 \log n < 2.25 N^I(n, n). \]

F. The SIGN Function

In order for procedure sort to work correctly, it is necessary that the \(K \times 2K \) and \(2K \times 2K \) subarrays being sorted in Steps 2b) and 2c) satisfy the initial conditions of HORIZONTAL_MERGE and VERTICAL_MERGE, respectively. In order to meet these conditions, it is necessary to sort some of the subarrays into nonincreasing order and others into nondecreasing order. The order into which a subarray gets sorted is determined by the sign function used during a comparison-interchange. Recall that the comparison-interchange instruction was defined in Section I to be

\[\text{IF} \ \text{SIGN}(I, S) \ast (R_i - R_j) < 0 \ \text{then} \ \text{interchange} \ (R_i, R_j). \]

If during the sort of a \(K \times 2K \) (or \(2K \times 2K \)) subarray SIGN is +1 for all processors on which comparison-interchanges are made, then the \(K \times 2K \) (or \(2K \times 2K \)) subarray will be sorted into nondecreasing order. If the SIGN is -1, then the subarray will be sorted into nonincreasing order. One may easily verify that the following SIGN function will serve our purpose:
procedure \textbf{SIGN}(SI, S)
\begin{verbatim}
//SI = shuffled row-major index of processor
(as explained in Section I)/
//S = pass number defined in SORT//
If \{\text{SI}/2^3\} is even then return (+1)
else return (−1)
\end{verbatim}
end \textbf{SIGN}

Thus, each processor can determine the \textbf{SIGN} for its comparison-interchange if "S" is broadcast to all processors.

Fig. 5 illustrates the working of procedure \textbf{SORT} on a 4 × 4 mesh-connected computer. The "T" operation, when \(S = 3 \), represents a two-column merge. Four pairs of 2 × 1 columns are merged in parallel.

III. Extensions

Procedure \textbf{SORT} is easily modified to sort into snake-like row-major order. Only the \textbf{SIGN} function needs to be changed for the last \textbf{VERTICAL-MERGE}, i.e., the call \textbf{VERTICAL-MERGE}(n, n). During this call, \textbf{SIGN} is to be altered only when \textbf{ROW-MERGE} is invoked from Step 2 of \textbf{VERTICAL-MERGE}. This alteration is such that the \textbf{SIGN} for odd rows becomes −1 and remains +1 for even rows (recall rows are indexed 0 through \(n − 1 \)).

Following along the lines of Thompson and Kung [9], we may extend our row-major bitonic sort to the case of a \(j \)-dimensional array processor. We now have \(N = n^j \) processors arranged as in a \(n \times n \times \cdots \times n \) \(j \)-dimensional array. Each processor is connected to all of its neighbors. As before, the number of elements to be sorted is \(N \) and each processor is assumed to have three registers. For this extension, we define \textbf{LINEAR-MERGE}(i, K) to be identical to \textbf{ROW-MERGE}(K) of \textbf{COLUMN-MERGE}(K) except that the \(K \) elements are on the \(i \)-th axis of the \(j \)-dimensional array, \(1 \leq i \leq j \). We also define \textbf{TWO-COLUMN-MERGE}(i, K) to be the same as the corresponding algorithm for a two-dimensional array except the "column" is now the \(i \)-th axis. When \(K = 1 \), this algorithm is modified to do nothing. This will avoid redundant comparisons in the following algorithm. Procedure \textbf{MERGE} will merge along the \(i \)-th axis two subarrays of size \(K_j \times \cdots \times K_j/2 \times \cdots \times K_1 \) to result in an array of size \(K_j \times \cdots \times K_j \times \cdots \times K_1 \) sorted in row-major.

procedure \textbf{MERGE}(i, K_j, \ldots, K_j, \ldots, K_1)
\begin{verbatim}
1) Move elements from the second subarray to corresponding processors in the first subarray
2) for \(A = j, j − 1, \ldots, i + 1 \) do
 \textbf{TWO-COLUMN-MERGE}(A, K_A)
3) compare-interchange elements
4) move rejected elements back to corresponding processors in the second subarray
5) \textbf{LINEAR-MERGE}(i, K_i/2)
6) for \(A = i − 1, i − 2, \ldots, 1 \) do
 \textbf{LINEAR-MERGE}(A, K_A)
end \textbf{MERGE}
\end{verbatim}

Note that the "for" loops of Steps 2 and 6 are done sequentially for each value of \(A \). One may verify that for \(j = 2 \), procedure \textbf{MERGE} reduces to \textbf{HORIZONTAL-MERGE} when

\[i = 1 \] and to \textbf{VERTICAL-MERGE} when \(i = 2 \). The number of routing steps is

\[N_r^M(K_j, \ldots, K_1) = 2(K_1 + K_2 + \cdots + K_j) − 2j. \]

The sorting algorithm for \(N = n^j \), then, is recursively defined as

procedure \textbf{JSORT}(n^j)
\begin{verbatim}
1) \textbf{JSORT}(n^j/2);
2) \textbf{MERGE}(1, n/2, n/2, \ldots, n/2, n)
3) \textbf{MERGE}(2, n/2, \ldots, n/2, n, n)
\ldots
j + 1) \textbf{MERGE}(j, n, n, \ldots, n)
end \textbf{JSORT}
\end{verbatim}

The "sign" of comparison is determined by a simple extension of the method of Section II-F.

The total number of routing steps will be

\[N_r^J(n^j) = N_r^M(n^j/2^j) + \sum_{i=1}^{j} (2ni + n(j − i)) − 2j^2 \]

which gives

\[N_r^J(n^j) = (3j^2 + j)(n − 1) − 2j \log N. \]

(This is the same number of routing steps as in [9] for the shuffled indexing.)

The number of compare-interchange steps \(N_r^J \) is invariant to the interconnection scheme, is the same as for \textbf{SORT} and, the number of register-interchange steps \(N_r^J \) will still be less than \(3N_r^J \).

It is interesting to consider the case of maximal connecti-
vity (with respect to the bitonic sort algorithm), where
N = 2^\log N \text{ processors are interconnected}
(lo=log N)-dimensionally. Then, each processor would be con-
ected to exactly log N other processors. Upon substituting
n = 2 and j = log N, the number of routing steps is reduced to
N' = \log^2 N + \log N = 2N'.

This is as expected as every pair of processors involved in a
compare-interchange will be adjacent. Stone's "perfect-
shuffle" network [7] also sorts N elements in O(\log^2 N) time.
His network uses a far smaller processor connectivity than
log N.

IV. Conclusions

We have shown that bitonic sort can be adapted to sort n^2
elements into row-major order on an n x n mesh-connected
computer in O(\log n) time. This is an improvement over Orcutt's
[7] adaptation which requires O(n \log n) time. Our al-
gorithm makes the same number of routes and comparison-
interchanges as does that of Thompson and Kung [9]. Their
algorithm, however, obtains a shuffled row-major order.
Thus, row-major order is not "decidedly" nonoptimal for
bitonic sort as claimed in [9]. Our algorithm needs about
12.5 percent more register-interchanges than does that of [9].
These are, however, much cheaper than "routes." Our
algorithm for row-major bitonic sort can be extended to
snake-like row-major ordering and also to sorting on a
j-dimensionally connected computer. In the latter case, the
algorithm requires as many routes and comparison-
interchanges as does that of [9].

REFERENCES

1978.
speed computations," Ph.D. dissertation, Stanford Univ., Stanford,
CA, Sept. 1974, ch. 2.
Apr. 1977.