IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 1, JANUARY 1979

Bitonic Sort on a Mesh-Connected
Parallel Computer

DAVID NASSIMI anp SARTAJ SAHNI

Abstract—An 0(n) algorithm to sort n* elements on an Illiac
IV-like n x n mesh-connected processor array is presented. This
algorithm sorts the n? elements into row-major order and is an
adaptation of Batcher’s bitonic sort. A slight modification of our
algorithm yields an O(n) algorithm to sort n” elements into snake-like
row-major order. Extensions to the case of a j-dimensional processor
array are discussed.

Index Terms—Bitonic sort, complexity, mesh-connected parallel
computer, parallel sorting, SIMD machine.

I. INTRODUCTION

ATCHER’S bitonic sort [2], [6, pp. 232-233, 237] is

based upon his algorithm to sort a bitonic sequence into
nondecreasing order. A sequence X = (x,X,, **,xy)issaid
to be bitonic [2], [8] if either 1) there is an index i,1 < i < N,
such that x; <x, < " <x;>x;4, > >xy or 2) the
sequence can be shifted cyclically so that condition 1) is
satisfied. Batcher’s algorithm to sort a bitonic sequence X is
to recursively sort the bitonic sequences XODD = (x;, X,
Xs, -*+) and XEVEN = (X,, X4, X¢, ***) and then perform the
comparison-interchanges x;: X,, X3: X4, X5: X, ** . During
the comparison-interchange x;: x;, ;, x; is replaced by the
smaller of x; and x;,, and x;,,; becomes the larger of
the two. Any sequence Y = (y;, y,, ***, yy) may besorted by
recursively sorting (v, y2, ", Vin21) into nonincreasing
order, (yiy/2+1> "> Yn) into nondecreasing order (or vice
versa) and then sorting the bitonic sequence (yy, 5, " *, Yn)
into nondecreasing order using Batcher’s method.

Bitonic sort has been adapted by Orcutt [7] and Thomp-
son and Kung [9] for an n x n mesh-connected parallel
computer. The computer consists of N =n? identical
processors configured in a manner similar to the Illiac IV
machine [1]. The assumptions we shall be making on the
machine model are as follows. ,

1) It is an SIMD type [4] machine. The N=n xn
identical processors may be thought of as positioned accord-
ing to an n x n array P(0:n — 1, 0:n — 1). Each processor
P(i, j) is connected to its neighbor processors P(i + 1, j),
P(i—1,), P(i, j+ 1), and P(i, j — 1) if they exist. The
end-around connections of the Illiac IV are not assumed
here.

2) Each processor has three registers: one routing register
R, and two storage registers R, and R,.

Manuscript received February 1, 1978; revised June 6, 1978 and July 24,
1978. This work was supported in part by the National Science Founda-
tion under NSF Grant MCS.76-21024.

The authors are with the Department of Computer Science, University
of Minnesota, Minneapolis, MN 55455.

3) A REGISTER INTERCHANGE instruction with time = 1.
Each selected processor unconditionally interchanges the
contents of two of its registers. (The same registers are used
for all processors.) In our algorithm, only column-
selectability and row-selectability of processors is needed.

4) A ROUTE instruction with time = 1,. All processors
route the contents of their R, to theirimmediate neighbor in
the same direction. Thus, this instruction simply shifts the
entire R,-array (end-off, zero-filled) unit-distance in one of
the four directions up, down, left, or right.

5) A COMPARE-INTERCHANGE instruction with time = 7.
All processors do the (hardware) equivalent of the following
statement:

If sigN (I, S) = (R, — R,) <0

then interchange (R,, R;)
where I = processor index, and S = “pass number” of the
algorithm. The function SIGN will be specified later. After a
compare-interchange instruction, we shall refer to the ele-
ment in R; as the “accepted” element (to be kept by the
processor) and the one in R, as the “rejected” element (to be
routed back). Note that even though all processors carry-
out this instruction, only N/2 of the processors would be
doing “useful work.” The result of the other half is “don’t
care.”

The sorting problem studied in [3], [7], and [9] is that of
routing the contents of then x nrouting registers to destina-
tion processors. Each data item is to be routed to a distinct
processor. The processors are assumed indexed in some
manner and the routing is such that the Ith processor is to
contain the Ith smallest element, 1 < I < N. Three different
indexing schemes have been considered by Thompson and
Kung [9]: row-major, shuffled row-major, and snake-like
row-major. In row-major order, the index I of processor P(i,
j)isi = n + j (i.e., processors are indexed left to right, top to
bottom). In shuffled row-major, the index of a processor is
obtained by shuffling its row-major index. For example, if
the row-major index in binary is b; b, b3b,bsbgb,bg then
its shuffled index is b;bsb,bgb3b,b,bg. Snake-like row-
major indexing is obtained by indexing the processors by
row (as in row-major). Processors on even rows are indexed
left to right while those on odd rows are indexed right to left
(recall that rows are numbered O through n — 1).

. Thompson and Kung [9] present fast parallel algorithms
for sorting into snake-like row-major and shuffled row-
major order. For snake-like row-major order, they present
an s*-way merge algorithm requiring 6n + 0(n*? log n)
routing steps and n+0(n*? log n) comparison-

0018-9340/79/0100-0002$00.75 © 1979 IEEE

NASSIMI AND SAHNI: BITONIC SORT ON MESH-CONNECTED COMPUTER

interchanges. Thus, the time needed to sort n? elements into
snake-like row-major order is (6n + 0(n*? log n))r, +
(n + 0(n*> log n))r.. Following a sort into snake-like row-
major order the elements may be rearranged into row-major
order by reversing the order of elements in odd numbered
rows. The additional time needed for this is 2(n — 1)t, +
0(log n)r;. Thompson and Kung also analyze bitonic sort for
shuffied row-major order. Their algorithm takes
(14(n — 1) — 8 log n)t, + (2 log? n + log n)t, time. Their
algorithms require each processor to have only two reg-
isters. They also point out that if n x n elements have
already been sorted by some index function, and if each
processor can store n elements, then the N = n? elements
can be sorted with respect to any other index function using
an additional 4(n — 1)z, units of time. Orcutt [7] analyzes
bitonic sort for the case of row-major order. His algorithm
takes O((n log n)r, + (log® n)(r. + 1;)) time to sort n?
elements.

In this paper we shall obtain a different adaptation of
bitonic sort for row-major ordering. Our bitonic sort algor-
ithm will require (14(n — 1) — 8 log n)r, + (2 log? n +
log n)t. + (4.5 log? n + 1.5 log n)r, time. If we include the
register interchanges needed by the algorithm of [9], the time
for that algorithm becomes (14(n — 1)— 8 log n)r, +
(2 log® n + log n)(t, + 2t,). Hence, our adaptation for row-
major order is almost as fast as that of Thompson and Kung

[9] for shuffled row-major order. Our adaptation is, of -

course, faster than that of Orcutt [7] by a factor of O(log n).
However, the algorithm uses more routes and interchanges
than does the s>-way merge algorithm of [9] followed by an
odd-even transposition sort. The importance of the algor-
ithm developed here lies in the fact that bitonic sort is faster
than s>-way merge sort for n < 512 [9]. Hence, while s*-way
merge followed by an odd-even transposition sort will be
faster than our algorithm for large n, it will not be so for
smaller (and perhaps more practical) values of n. Secondly,
[9] states that the row-major indexing scheme is “decidedly”
nonoptimal for bitonic sort. Our adaptation shows that this
statement is inaccurate. Finally, it is worth noting that every
sorting algorithm for a mesh connected machine must result
in at least 4(n — 1) routes in the worst case [9]. Hence, our
algorithm (as well as those of [9]) is optimal to within a
constant factor. Gentleman [5] proves lower bounds for
matrix multiplication on a machine model similar to that
used here.

In Section II, we present our algorithm, and also specify
the sIGN function to be used in comparison-interchange. In
Section III, we extend our algorithm to the case of a
j-dimensional array processor.

II. Row-MAJOR BITONIC SORT

Our row-major bitonic sort algorithm is specified as a
series of subalgorithms in algorithmic notation. In analyzing
the algorithms, we shall count only N,, N ;,and N which are
respectively the number of routes, register interchanges, and
comparison-interchange steps. The analysis will assume that
the number of elements involved is a power of 2. All
logarithms throughout this paper are in base 2.

~

A. Row Merge

Our first subalgorithm, Row_MERGE(K), sorts a bitonic
sequence of size K. The K elements are in K adjacent
processors on one row of the n x n array.

procedure ROW_MERGE(K)
1) Let Py, ---, Py be the processors corresponding to
the elements
2) if K = 1 then return

3) shift elements from Py, 4, -+, Py respectively to
Py, -+, Py -

4) perform a comparison-interchange on Py, -+, Py,

5) shift rejected elements from P, -+, P, respectively
to Pypaers s Py

6) Invoke in parallel, Row MERGE(K/2)for Py, -~ P 5
and Pg,.q, "7, P (note that this is not a
recursive call but simply a go to step 1 with K
updated).

end ROW_MERGE

The analysis for ROW MERGE is

(K + NXK/2), ifK>1
W) - KNI,

(0, ifK =1

1+ NXKpR), ifK>1
Na)= LR

(0, ifK=1.

If we assume all elements to initially and finally be in the
routing registers then, preceding Step 3, elements in P, - -,
P/, have to be transferred to register R,. Following Step 5,
elements from R;in P, ---, Py, haveto be transferred to R,.
Hence

N¥(K) = 2NE(K),
Solving these recurrences, we get (recall K is a power of 2)

NE(K)=2K —2; N¥(K)=log K
and

Nf{(K)=12log K.

B. Column Merge

Procedure coLUMN_MERGE(K) is identical to ROw
MERGE(K) except that it sorts a bitonic sequence of K
elements which are in K adjacent processors on one column
of the n x n array. The analysis is identical to that for Row
MERGE. We shall use N¢(K), N$(K),and N§(K)todenote ths
counts.

C. Vertical Merge

Procedure VERTICAL MERGE(J, K) sorts into either nonin-
creasing or nondecreasing row-major order a J x K array
which is made up of two vertically aligned J/2 x K arrays.
One of these is in nondecreasing row-major order and the
other is in nonincreasing row-major order.

procedure VERTICAL MERGE(J, K)
1) for all columns in parallel do
COLUMN_MERGE(J);

2) for all rows in parallel do
ROW_MERGE(K);
end VERTICAL_MERGE

An example of vertical merge is illustrated in Fig. 1. An
arrow indicates a compare-interchange. The head of an
arrow points to the processor which retains the larger
element. ‘ ‘

The correctness of VERTICAL MERGE may be established by
considering the sequence of comparison-interchanges that
take place during the bitonic sort of a bitonic sequence
X = (x4,Xx,, -+, x,). Unfolding the recursion, we see that if p
is a power of 2 then comparison-interchanges take place in
the order

compare-interchange elements p/2 apart
compare-interchange elements p/4 apart
compare-interchange elements p/8 apart

compare-interchange elements 1 épart.

VERTICAL MERGE begins with a bitonic sequence of J * K
elements in row-major order. If we look at Step 1 then the
following sequence of comparison-interchanges takes place:

compare-interchange elements JK/2 apart
compare-interchange elements JK/4 apart

compare-interchange elements K ' apart.
Finally, in Step 2 the following sequence is performed:

compare-interchange elements K/2 apart
compare-interchange elements K/4 apart

compare-interchange elements 1 .apart.

Hence, VERTICAL MERGE is identical to bitonic sort and so
must correctly sort the J x K bitonicarray. The analysis for
VERTICAL_MERGE 1is

NY(J, K)= NE(J) + NR(K)=2(J + K)— 4
N{(J, K) = Nc(J) + N(K) = log (JK)
NY(J, K) = N§(J) + N¥(K) = 2 log (JK).

D. Horizontal Merge

In this section we give an algorithm to sort aJ x K array
which is made up of two horizontally aligned and adjacent
J x K/2 arrays. One of these is already sorted in nonde-
creasing row-major order while the other is in nonincreasing
row-major order. But first we give an algorithm, TWO
COLUMN_MERGE, to sort a bitonic sequence < ay, a4y, ***,
a,;_ > initially loaded in a column of J processors < P,
Py, -+, P;_; > suchthat P;contains a; and a;,;,,0 < i < J.
If the sorted sequence is < by, by, **+, byy_1 > then at
termination, processor P; contains elements b,; and by, ;.

procedure TWO COLUMN_MERGE(J)
1) Let Py, Py, -+, P,_, be the J processors
2) Compare-interchange the elements in
processor

each

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 1, JANUARY 1979

21 5| 6} 9 2| 5| 6| 8 2| 4] 3] 1 2| 1| 3| ¢4
10111213<7A31 7|1 5| 6| & 6l 5| 7| 8
c(™|16]|15|14] 8 16]15|14| 9 10(1112} 9 10| 912|111 10(11§12

C(10 111213 16|15|14(13 14{13|16|15 13(14|15/|16

Fig. 1. Vertical merge of two 2 x 4 arrays.

3) if J > 1 then
a) Exchange the rejected elements of Pg, "+, Py5_4
with the accepted elements of P;;,, -+, P;_y;
b) In parallel perform TWO_COLUMN MERGE(J/2) on
the processors Po, -+, Py, and Py, Py
end TWO_COLUMN _MERGE

Fig. 2 illustrates the working of TWO COLUMN MERGE on an
example.

The correctness of TWO_COLUMN MERGE may be estab-
lished using an argument similar to that used for VERTICAL
MERGE. Analyzing the number of steps, we obtain

J+NIJR) ifJ>1
NTJ=’ ’
') |0 ifJ =1
=2J -2
1+ NTUJR) ifJ>1
iy |1 TN
N°(")_|1 ifJ=1
=1+loglJ.

Register interchanges are needed in Step 3a) to ex-
change rejected and accepted elements. This can be done
with three register interchanges: first move the rejected
elements on P, -+, P,_; to R,; next route the rejected
elements from Pg, -+, P;5_4 to Py, -+, P;_;; now inter-
change between R and R, on P;,, -+, P,_;; route from
Py, -, P;_yto Py, -+, Py, y; finally move from R, to R,

on Py, -+, P;_,. Hence
3+ Nj(J/)2) ifJ>1
NT _ | 1
V) |0 ifJ=1
=3 log J.

We are now ready for the horizontal merge algorithm.
procedure HORIZONTAL MERGE(J, K)

1) Let the K columns be Cy, C,, -+, Cg

2) Move in parallel elements from the J processors in
each of the columns Ck, .4, ***, Cx to the corresponding
processors in the columns Cy, C,, -+, Cg/, respectively

3) For each of the columns C,, C,, ‘-, Cg/, perform in
parallel, TWO_COLUMN_MERGE(J)

4) Move, in parallel, the rejected elements back to the
processors in Cgp 41, "+, Ck

5) if K > 2 then invoke in parallel Row_MERGE(K/2) for
each of the 2J rows of size K/2 // note: 2J rows, each con-
taining K/2 adjacent processors, are obtained by splitting
each of the original J rows into two. //

end HORIZONTAL MERGE

NASSIMI AND SAHNI: BITONIC SORT ON MESH-CONNECTED COMPUTER

C C
C:R{sl}r RS Rr RQR\r Rs Rt RQ R R

L S I

1,8 1/8) 14 1(8) 12 12

3,6 32 (g} 4 3 3 4
s {9

3\6
4,5 [1&5 8 5 56 56

7,2 \2)7 67 G§ 7 8 7 78

Fig. 2. Two-column merge (performed in one column of processors).

Figs. 3 and 4 illustrate the working of HORIZONTAL MERGE.
The correctness of the algorithm follows from an argument
similar to that used for VERTICAL MERGE.

The number of routing steps is given by

NJ(J, K)= K/2 + NT(J) + K/2 + NR(K/2)
=2(J +K)—4.
For the number of comparison-interchanges, we get
NZ(J, K) = N{(J) + N{(K/2)
= log (JK).
The number of register interchanges is
N{(J, K)= NT(J) + N}(K/2) +2

where the 2 comes from Steps 2 and 4.
Substituting, we get

NY(J,K)=3logJ +2log K.

E. The Main Procedure

Having defined the subalgorithms, we now give the main
procedure, SORT, that will sort n? elements into nondecreas-
ing row-major order. This algorithm also defines a pass
number S which will be used (as explained in the next
section) to determine how comparison-interchanges are to
be performed.

procedure SORT(r, 1)
1) K<S«1
2) while K < n do
a) Consider the n x n processor array as composed of
many adjacent K x 2K subarrays
b) do in parallel for each K x 2K array
HORIZONTAL MERGE(K, 2K)
c) S<S+1
d) Consider the n x n processor array as composed of
many adjacent 2K x 2K subarrays
e) do in parallel for each 2K x 2K array
VERTICAL_MERGE(2K, 2K)
f)S<S+1,K<2xK
end
end SORT
The total number of routing steps is

N3(n, n) = N3(n/2, n/2) + NH(n/2, n) + NY(n, n)
=Ni(n/2,n2)+Tn—8,n>1
and

N3(1,1)=0.

IS Uy,
%0 1?1 1%8 |39 Ibo b1 (P2 |5 S0 |1 |2 [%3
22 123 |P10/%11 lba 55 |6 |7 4 (5 % |%7
34 %5 1%12]%13 s |9 [P10]P1a] {98 [%9 |®10{11
36 127 1%14]%15 b12P13(P14|Pas| [C12]%13[%14] %15

Fig. 3. Horizontal merge of two 4 x 2 arrays ("T” = Two-column

Merge; “C” = Compare-Interchange).

3 4] 5| 8]32{30(29|27 3 4 2| 1] 7| 6] 5| 8
9111{12{13|26]24|23|22 9111(12|10f{14{15]16|13
14(15(17]18]21]19[16|10 20119(17{18]21(24(23|22
20(25{28(31} 7| 6| 2| 1 26(25[28(27]32|30(29|31
T j‘
e el aYal
2| 1| 3| 4} 5| 6| 7| 8 1| 2| 3] 4} 5| 6| 7| 8
9{10]12{11}14[13[16][15 9(10(11f12f13{14|15|16
17118]20({19})21|22|23|24 17118(19{20}21{22|23{24
26[25[28(27}29|30(|32|31 25126(27)28}29{30|31(32

Fig. 4. Horizontal Merge of two 4 x 4 arrays.

Hence, N}(n, n) = 14(n — 1) — 8 log n.
The number of comparison-interchanges is

N2(n, n) = N(n/2, nj2) + N (n/2, n) + N¥(n, n)
= N3(n/2,n2) +4logn —1
=2 log? n + log n.

The number of register-interchanges is

N3(n, n) = N§(n/2, n/2) + N¥(n/2, n) + NY(n, n)
= Ni(n/2, n/2) +‘5 logn—3+4logn
= N{(n/2,n/2) + 9 log n — 3
=4.51log’ n + 1.5 log n < 2.25 N3(n, n).

F. The siGN Function

In order for procedure SORT to work correctly, it is
necessary that the K x 2K and 2K x 2K subarrays being
sorted in Steps 2b) and 2e) satisfy the initial conditions
of HORIZONTAL MERGE and VERTICAL MERGE, respectively. In
order to meet these conditions, it is necessary to sort some of
the subarrays into nonincreasing order and others into
nondecreasing order. The order into which a subarray gets
sorted is determined by the SIGN function used during a
comparison-interchange. Recall that the comparison-
interchange instruction was defined in Section I to be

If SIGN(T, S) * (R, — R,) < O then interchange (R,, R,).

If during the sort of a K x 2K (or 2K x 2K) subarray
SIGN is +1 for all processors on which comparison-
interchanges are made, then the K x 2K (or 2K x 2K)
subarray will be sorted into nondecreasing order. If the SIGN
is —1, then the subarray will be sorted into nonincreasing
order. One may easily verify that the following SIGN function
will serve our purpose:

procedure SIGN(SI, S)
//SI = shuffled row-major index of processor
(as explained in Section I)//
//S = pass number defined in SORT//
If |S1/2%] is even then return (+ 1)
else return (—1)
end SIGN

Thus, each processor can determine the SIGN for its
comparison-interchange if “S™ is broadcast to all processors.
Fig. 5 illustrates the working of procedure SORT on a 4 x 4
mesh-connected computer. The “T” operation, when § = 3,
represents a two-column merge. Four pairs of 2 x 1 col-
umns are merged in parallel.

ITI. EXTENSIONS

Procedure sorrT is easily modified to sort into snake-like
row-major order. Only the SIGN function needs to be
changed for the last VERTICAL MERGE, i.e., the call VERTICAL
MERGE (1, n). During this call, SIGN is to be altered only when
ROW MERGE is invoked from Step 2 of VERTICAL MERGE. This
alteration is such that the siGN for odd rows becomes — 1
and remains +1 for even rows (recall rows are indexed 0
through n — 1).

Following along the lines of Thompson and Kung [9], we
may extend our row-major bitonic sort to the case of a
J-dimensional array processor. We now have N = n’ proces-
sors arranged as in an x n x --- x n j-dimensional array.
Each processor is connected to all of its neighbors. As before,
the number of elements to be sorted is N and each processor
is assumed to have three registers. For this extension, we
define LINEAR MERGE(i, K) to be identical to Row MERGE(K)
or COLUMN MERGE(K) except that the K elements are on the
ith axis of the j-dimensional array, 1 < i < j. We also define
TWO COLUMN MERGE(i, K) to be the same as the correspond-
ing algorithm for a two-dimensional array except the
“column” is now the ith axis. When K = 1, this algorithm is
modified to do nothing. This will avoid redundant compari-
sons in the following algorithm. Procedure MERGE will
merge along the ith axis two subarrays of size K;x- x
K;/2 x -+ x K; to result in an array of size Kj;x - x
K; x -+ x K, sorted in row-major. :

procedure MERGE(i, K, -, K, -+, K;)

1) Move elements from the second subarray to corre-
sponding processors in the first subarray

2)for A=j,j—1,---,i+1do

TWO_COLUMN_MERGE(A4, K)

3) compare-interchange elements

4) move rejected elements back to corresponding
processors in the second subarray

5) LINEAR MERGE(i, K, /2)

6) for A=i—1,i—2 - 1do
LINEAR MERGE(A, K ,)
end MERGE

Note that the “for” loops of Steps 2 and 6 are done
sequentially for each value of 4. One may verify that for
J = 2,procedure MERGE reduces to HORIZONTAL MERGE when

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 1, JANUARY 1979

. —
e A C[+11+16‘4"6 I T
" 317 771007 9 MR T falte] 4l 6
ta|* 8|t 5|1 *glM12]” 5|14 * gt o134
S PR gy U7 == SR (TR N
15]7 2|73 2 15]% 2137 15/ t2] " 5|7
S=1; HM(1,2) S=2; vM(2,2)
T L c c
) S N |
T A T Faltyltelty taltalt ety
1116t 6|t 4 10|" 9| *11|*16 * 910/ 1] 16
T 2|7 8|T14]713 T14|715]712] 13| o tas T4l T3] 12
T12|715]7 5|7 T slm 872072 gt s|t oty
Lle’T—I S=h; VM(4,4)
S=3; HM(2,4)
c c c
r-‘:QA] ko R s
c[+3+4+6+7 “altalt ot talt alt 3ty
al® T o[Fy + ol o 2 2 Folt st el 5
c[+15 SUNEIT *9lt0M11 M2 *olt10] M1 12
* 9l*10|M11(16 *1sta i3l e ti3 s ts | e

1 2 3 4
5 6 7 8
9] 10| 11} 12
13] 14| 15| 16

Fig. 5. A complete example of sorting a 4 x 4 array.

i =1 and to VERTICAL_MERGE when i = 2. The number of
routing steps is

The sorting algorithm for N = n, then, is recursively defined
as

procedure JSORT(1/)
1) 3sorT(n//29);
2) MERGE(L, n/2, n/2, ---, n/2, n)
3) MERGE(2, n/2, -+, n/2, n, n)

j+ 1).MERGE(j, 7, 1, <= 1)
end JSORT

The “sign” of comparison is determined by a simple exten-
sion of the method of Section II-F.
The total number of routing steps will be

J

Ny = NY@2) + 3 (ani + G = 1)) = 27

i=1
which gives
NY(W) = (3% + j)(n — 1) — 2 log N.

(This is the same number of routing steps as in [9] for the
shuffled indexing.)

The number of compare-interchange steps N7 invariant to
the interconnection scheme, is the same as for SORT. And, the
number of register-interchange steps N will still be less than
3N

It is interesting to consider the case of maximal connecti-

NASSIMI AND SAHNI: BITONIC SORT ON MESH-CONNECTED COMPUTER

vity (with respect to the bitonic sort algorithm), where
N = 2'°¢N processors are interconnected

(log N)-dimensionally. Then, each processor would be con-
nected to exactly log N other processors. Upon substituting
n=2andj = log N, the number of routing steps is reduced
to

N? =log? N +log N = 2N

This is as expected as every pair of processors involved in
a compare-interchange will be adjacent. Stone’s “perfect-
shuffle” network [7] also sorts N elementsin O(log> N)time.
His network uses a far smaller processor connectivity than
log N.

1V. CONCLUSIONS

We have shown that bitonic sort can be adapted to sort n*
elements into row-major order on ann x nmesh-connected
computer in O(n) time. This is an improvement over Orcutt’s
[7] adaptation which requires O(n log n) time. Our algor-
ithm makes the same number of routes and comparison-
interchanges as does that of Thompson and Kung [9]. Their
algorithm, however obtains a shuffled row-major order.
Thus, row-major order is not “decidedly” nonoptimal for
bitonic sort as claimed in [9]. Our algorithm needs about

12.5 percent more register-interchanges than does that of [9].

These are, however, much cheaper than “routes.” Our
algorithm for row-major bitonic sort can be extended to
snake-like row-major ordering and also to sorting on a
j-dimensionally connected computer. In the latter case, the
algorithm requires as many routes and comparison-
interchanges as does that of [9].

REFERENCES

[1] G. H. Barnes et al, “The ILLIAC IV computer,” IEEE Trans.
Comput., vol. C-17, pp. 746-757, 1968.

[2] K. E. Batcher, “Sorting networks and their applications,” in Proc.
AFIPS 1968 SJCC, vol. 32, Montvale, NJ: AFIPS Press, pp. 307-314.

[3] G. Baudet and D. Stevenson, “Optimal sorting algorithms for parallel
computers,” Carnegie-Mellon Univ., Pittsburgh, PA, Dep. Comput.
Sci. Rep., May 1975, IEEE Trans. Comput., to be published.

[4] M. J. Flynn, “Very high-speed computing systems,” Proc. IEEE, vol.
54, pp. 1901-1909, 1966.

[5] W. M. Gentleman, “Some complexity results for matrix computations
on parallel processors,” J. Ass. Comput. Mach., vol. 25(1), p.p. 112-115,
1978.

[6] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching. Reading, MA: Addison-Wesley, 1973.

[7] S. E. Orcutt, “Computer organization and algorithms for very-high
speed computations,” Ph.D. dissertation, Stanford Univ., Stanford,
CA, Sept. 1974, ch. 2.

[8] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans.
Comput., vol. C-20, pp. 153-161, 1971.

[9] C. D. Thompson and H. T. Kung, “Sorting on a mesh-connected
parallel computer,” Commun. Ass. Comput. Mach., vol. 20, pp. 263-271,
Apr. 1977.

David Nassimi was born in Iran on December
22, 1944. He received the B.S. degree in electrical
engineering and the M.S. degrees in electrical
engineering and computer science, in 1968, 1978,
and 1978, respectively, all from the University of
Minnesota, Minneapolis.

During the period 1968-1972, he was employed
by Control Data Corporation where he developed
programs for computer systems diagnosis. He is
currently completing the Ph.D. degree in com-
puter science at the University of Minnesota. He
has held research assistantships in several areas, including computer-
aided instruction, simulation of computer networks, and parallel compu-
tations. His Ph.D. dissertation is on the design and analysis of parallel
algorithms.

Sartaj Sahni was born in Poona, India, on July
22, 1949. He received the B.Tech (elec. eng.)
degree from the Indian Institute of Technology,
Kanpur, India, in 1970, and the M.S. and Ph.D.
degrees in computer science from Cornell Univer-
sity, Ithaca, NY, in 1972 and 1973, respectively.

He is currently an Associate Professor of Com-
puter Science at the University of Minnesota,
Minneapolis. He has published in JACM, JCSS,
SIAM Journal on Computing, IEEE TRANSAC-
TIONS ON COMPUTERS, ACM Transactions on
Mathematical Software, Operations Research, International Journal on
Theoretical Computer Science, Mathematics of Operations Research, and
the Journal of Statistical Computation and Simulation. His publications
are on topics concerned with the design and analysis of efficient algo-
rithms. He is also the coauthor of Fundamentals of Data Structures
(Computer Science Press, 1976) and Fundamentals of Computer Algorithms
(Computer Science Press, 1978).

