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Parallel Algorithms to Set Up the Benes
Permutation Network

DAVID NASSIMI AND SARTAJ SAHNI, MEMBER, IEEE

Abstract—A parallel algorithm to determine the switch settings for
a Benes permutation network is developed. This algorithm can deter-
mine the switch settings for an N input/output Benes network in
0(log2V) time when a fully interconnected parallel computer with N
processing elements is used. The algorithm runs in 0(/V1/2) time on an
N1/2 X N1/2 mesh-connected computer and O(log4/V) time on both a
cube connected and a perfect shuffle computer with NV processing el-
ements. It runs in 0(k log 3V) time on cube connected and perfect
shuffle computers with N1+1/« processing elements.

Index Terms—Benes permutation network, complexity, cube
connected computer, fully connected SIMD computer, mesh-connected
computer, parallel algorithm, perfect shuffle computer, set-up algo-
rithm.

I. INTRODUCTION

HE Benes permutation network B(n) is a network with
N = 27 inputs and outputs. The network is capable of
delivering at its output end any permutation of its IV inputs.

This network has been proposed for use in - >lephone networks, ,”

self-repairing multiprocessors [10], as an ‘.:2rconnection
network in parallel computers [12], etc. It forms the noart of
a common generalized connection network [7].

Fig. 1 gives a schematic of B(n) and Fig. 2 gives the two
possible states of a switch. Observe that there are N /2 switches
at the input stage and only N/2 — 1 switches at the output
stage. So the network of Fig. 1 incorporates the switch saving
scheme suggested by Waksman [9]. From Fig. 1 it follows that
B(n) has 2n — 1 switch stages and N log N — N + 1 switches
(note that B(1) is just a single switch). Let the switch stages
be numbered 0 through 2n — 2 left to right (see Fig. 1).

Waksman [9] has shown that the network B(n) is capable
of delivering at its output end any permutation of its [V inputs.
His proof of this fact is constructive and it directly leads to a
switch setting algorithm. This algorithm runs in O(V log N)
time on a single processor computer. Thus, the set-up time for
the network is much larger than the network delay [which is
O(log V)]. One cannot set up the Benes network in less than
0(V log N) time using a single processor as the network has
O(N log N) switches. In order to obtain a set-up algorithm of
complexity comparable to the delay time, it is therefore nec-
essary to consider parallel algorithms. An alternative is to
make the network self-setting, as has been done by Nassimi
and Sahni [5]. Their self-routing scheme, however, does not
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Fig. 1. The Benes permutation network B(n), N = 27,
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Fig. 2. States of a binary switch. (a) State 0. (b) State 1.

work for all permutations. Another alternative is to precom-
pute and store the switch settings for some permutations. This
requires O(N log V) bits of storage per permutation. Fur-
thermore, the precomputation approach is not suitable for
dynamic situations.

In this paper we develop a parallel set-up algorithm that is
significantly faster than the single processor algorithm of
Waksman. The complexity of our algorithm depends on the
parallel computer model and the number of processing ele-
ments available. We consider four computer models. All four
are SIMD (single instruction stream, multiple data stream)
type computers (see Flynn [13]). An SIMD computer consists
of some number M of processing elements (PE’s), each having
some local memory. The PE’s are indexed O through M — 1.
We shall refer to the ith PE as PE(i). The PE’s are synchro-
nized and operate under the control of a single instruction
stream. An enable/disable mask may be used to select a subset
of PE’s that will perform the instruction to be executed at any
given time. All enabled PE’s perform the same instruction. The
four SIMD models we shall consider differ in the way the PE’s
are interconnected. The PE interconnection pattern is im-
portant as PE’s can communicate only through the intercon-
nection network. The four PE interconnection networks de-
fining our four SIMD models are as follows.

1) Completely Interconnected Computer (CIC): In a CIC
model every pair of PE’s is directly connected. The time needed
to transfer data from one PE to another is 0(1).
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2) Mesh-Connected Computer (MCC): In this model, the
PE’s may be thought of as logically arranged as in a k-di-
mensional array A(ng—1, ng—2, " *, Ho), where #; is the size of
the ith dimension and M = ny—n,—; -+ - no. The PE at loca-
tion A(ix—1," ", io) is connected to the PE’s at location A (ix—1,
cee,ip 21,000 ,00), 0 < j <k, provided they exist.

3) Cube Connected Computers (CCC): Assume that M =
29 and let ig—; - - - io be the binary representation of i for i € [0,
M — 1]. Let i®) be the number whose binary representation
Sig—1"""ip+1 Ipip—1 - * * o, where I, is the complement of i, and
0 < b < q. In the cube model PE({) is connected to PE(i (®)),
0 < b <q. Siegel [14] discusses this interconnection scheme
in some detail.

4) Perfect Shuffle Computer (PSC): This employs the
shuffle connection of stone [15]. Specifically, let M, g, i, and
i®®) be as in the cube model. In the perfect shuffle model, PE(i)
is connected to PE(i(®), PE(i;—2i4—3 - " i¢ig—1), and PE-
(foig—1ig—2 * - * i1). These three connections will, respectively,
be called exchange, shuffle, and unshuffle.

One may verify that there are M — 1 connections per PE in
a CIC, 2k connections per PE (except boundary PE’s) in a
k-dimensional MCC, log M connections per PE in a CCC, and
3 connections per PE in a PSC.

The complexity of our algorithm to set up B(n) is 0(logZNV)
onan NN PE CIC, 0(log*N) on an N PE CCC and on an IV PE
PSC, 0(k log3N) on an N!*1/k PE CCC and N'*+!/4 PE PSC,

1 <k <log N, and O(N!/?) on an N1/2 X N1/2 two-dimen-

sional MCC. ,

It should be pointed out that a generalized-connection-
network (GCN, a network capable of performing any one-
to-many mapping of its inputs onto its outputs) of the type
described in [7] can also be set up in the asymptotic times just
given for a Benes network. This is so, as the GCN of [7] con-
sists of a hyperconcentrator, infrageneralizer, and a Benes
permutation network. The first two of these networks are
relatively easy to set up (see [3], [4], or [7]).

In Section II we develop our 0(log?/N) CIC algorithm.
Section III analyzes a minor modification of this algorithm
for CCC’s, PSC’s, and MCC’s. Finally, we should point out
that a short version of this paper was presented at the Work-
shop on Interconnection Networks held at Purdue University,
April 1980. Lev et al. [16] consider the set-up problem in a
more general framework, but do not consider implementing
* their algorithms on parallel computers with a fixed intercon-
nection network. The work reported here was done Indepen-
dently of [16].

II. SET-UP ALGORITHM FOR A CIC

As remarked earlier, the constructive proof provided by
Waksman (showing that B(n) can realize all N! permutations
of its IV inputs) leads to an 0(/Nlog ) single-processor set-up
algorithm.! It is instructive to review this proof as it also leads
to our parallel algorithm. Let D = D(0:N — 1) = (D(0), D(1),
-+, D(N — 1)) be the desired permutation. Input i is to be
routed by output D(i), 0 < i < N. Let the upper B(n — 1)
network of Fig. 1 be denoted by B, (n — 1) and the lower by
Bj(n — 1). We shall obtain the switch settings for the switches

1 Opferman and Wu independently discovered Waksman’s construction
and described it at length in [11].
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in stages 0 and 2n — 2, and also the permutations D, and D,
to be performed by B, (n — 1) and B;(n — 1). The switch set-
tings for the first and last stage and the permutations D, and
D; are such that if B, (n — 1) realizes D, and B;(n — 1) rea-
lizes D;, then B(n) realizes D. Since B(1) can realize all per-
mutations of 2 inputs, it will follow by induction that B, (n —
1) can be set up to realize D, and B;(n — 1) can be set up to
realize D;.

We shall assume that the switches in each stage are indexed
0 through V/2 — 1 top to bottom. This requires us to assign
indexes to nonexistent switches (for example, switch 0 of stage
2n — 2 refers to the switch with outputs O and 1 which has been
removed from Fig. 1). Let S(i, j) denote switch i of stage j, 0
<i<N/2,0<j=<2n—2 Weshallhave S(i,j) = 0 if switch
i of stage j is to be in state 0, and S(Z, j) = 1 if the switch is to
be in state 1. In specifying the permutations D, and D;, we
shall assume that the inputs and outputs of B,(n — 1) are
numbered 0 to N/2 — 1, whereas those of B;(n — 1) are
numbered NV/2 to N — 1. Recall from Fig. 1 that input i of
B(n) is connected through switch S(i/2, 0) to either input i /2
of B, or input N/2 +i/2 of B;. (All divisions in this paper are
integer divisions. So i/2 means | //2]). Similarly, output i of
B(n) must come from either output i /2 of B, or output N/2
+i/2 of By, through switch S(i/2, 2n — 2). Let E be the inverse
of D,ie., E(D()) =i,0=<i<N.

Corresponding to the input-output mapping (permutation)
D(0:N — 1), we may define an undirected bipartite multigraph
G (D) in the following way. The graph has vertices xg, X1, - *
, Xnj2—1 and yo, Y1, **°, Ynj2—1. Vertex x; corresponds to
switch i of the first stage (i.e., stage 0); vertex y; corresponds
to switch i in the last stage (i.e., stage 2n — 2). If D(i) = j in
the mapping, then the multigraph contains an undirected edge
(xi/2,¥js2). Fig. 3(a) shows an input-output mapping D(0:7)
=(3,2,5,0,4,6,7,1) for the network B(3). Fig. 3(b) gives
the corresponding bipartite multigraph.

Waksman’s construction in effect follows the cycles in the
bipartite multigraph G(D) in order to determine the state of
switches in the first and last stage of B(n), and obtain the
permutations D, and D;. We shall describe the process using
the example permutation of Fig 3(a). From the permutation
D(0:7), we are to find the switch settings for stages 0 and 4,
and obtain D, (0:3) and D;(4:7).

Beginning with switch S(0, 4), we must have S(0, 4) = 0 as
the switch is nonexistent (see Fig. 4). Node yo corresponds to
this switch; the cycle to follow is (yg, X1, ¥2, X2, ¥3, X3, Y0)-
(The bipartite multigraph is for exposition purposes; the al-
gorithm only uses the permutation D and its inverse £.) Since
S(0, 4) = 0, output 0 must come from B,. So input E(0) = 3
must be routed to B,,. Thus, S(1,0) =1 and D,(1) = 0. The
other input to switch S(1, 0) is 2. This input will go to B;. To
route it through B, we must have D;(4 + 2/2) =4+ D(2)/2.
Hence, D;(5) = 6. To get input 2 to its final destination, we
must have S(2, 4) = 0. So far, we have routed input 3 to output
0 through B,, and input 2 to output 5 through B;. In the
bipartite multigraph this corresponds to edges (x1, yo) and (x;, .
y») being routed through B, and By, respectively. The part of
the cycle we have traversed is yo, X1, y2.

Having determined S(2, 4) = 0, we conclude that output
4 must come from B,. Starting with output 4, we now repeat
the above process. That is, input £(4) = 4 is routed to output
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Stage 0 4 Stage 0 4
(a) (b)
Fig. 3. An example permutation for network B(3). (a) Input-output
mapping. (b) Bipartite multigraph.
5(0,0)

Fig. 4. The switch settings of the first and last stages corresponding to
Fig. 3.

4 through B, by setting S(2, 0) = 0 and D, (2) = 2. Conse-
quently, input 5 must connect to output 6 through B, giving
Dy(6) = 7and S(3,4) = 1. The state of switch S (3, 4) implies
that output 7 must come from B,,.

Finally, starting with output 7, we must route input £(7)
= 6 through B,,. This gives S(3,0) = 0and D, (3) = 3. Soinput
7 goes through B;. This requires D;(7) = 4 and S(0, 4) = 0.
But, the state of S'(0, 4) has already been determined. This
means that we have completed a cycle of the bipartite
graph.

The other cycle in the bipartite graph of Fig. 3(b) is (1, xo,
y1). Starting with y;, we arbitrarily set S(1, 4) = 0. Now this
cycle may be processed in the same way. It gives S(0,0) = 1,
D,(0) = 1, and D;(4) = 5. Having processed all cycles of
G (D), all switch settings for stages 0 and 4 have been deter-
mined. The permutations to be realized by B, (2) and B,;(2)
are D, = (1,0,2,3)and D; = (5, 6,7, 4). (See Fig. 4.)

Let J, be the set of outputs that receive their signals from
B, (n — 1). It is clear that the following are true for any J,,
determined by Waksman’s algorithm:

1) 0e Jy,

2) |Ju| = N/2 (JJ.] is the number of elements in J,,),

3) ifiandj € J, and i # j, then i = j© and E(i) #
(EG)©O.

(Recall that i® denotes the integer differing from i only in
bit 0.)

Any set J,, satisfying properties 1), 2), and 3) above will be
called a matching. The dark lines of Fig. 3 correspond to edges
incident to elements in J,,. In Fig. 3(b) observe that the dark
lines match each input switch x; with a distinct output switch
yj. That is, the set J, defines a complete matching on the
bipartite graph G (D).

Note that to determine the switch settings for stages 0 and
2n — 2 and to determine D; and D,,, it is adequate to find any
set J,, satisfying properties 1), 2), and 3). If i € J,,, then (all
divisions are integer divisions):

R1: S(i/2,2n—2) =i

R2: S(E(i)/2,0) = (E(i))o

R3: D,(E@i)/2)=i/2

R4: Dy(N/2+ E(i)/2) = N/2 + D{E(i)®)/2.

These four rules are the same as those given in [11].

We now describe our parallel algorithm for finding a
matching J,. First, we partition the output set J =1{0,1,-- -,
N — 1}into equivalence classes such that i and j are in the same
equivalence class iff either both i and j must get their signals
from B,(n — 1) or both must get them from B;(n — 1).
Equivalently, i and j are in the same class iff either both must
be in J,, or both must be in J — J,,. Note that such an equiva-
lence class satisfies property 3) of a matching. For the example
of Fig. 3, we see that since 0 € J,, 4 and 7 must also be in J,,.
Also,since 1 ¢ J,,6 and 5mustbeinJ — J,. If 2 € J,, then
3¢ J,,and if 3 € J, then 2 ¢ J,. So the equivalence classes
are {0, 4, 7}, {1, 6, 5}, {2}, and {3}.

Once the equivalence classes have been determined, we can
determine the set J,. We make the following observations
about the equivalence classes defined above. '

1) Let Q be an equivalence class. If i € Q, then i(® ¢
0.

2) Ifi e Q1andi©® e Q,, then Q; u Q; defines a cycle of
the bipartite graph G(D). For every j € @1, j® € Q,. For
every j € 02,/ e Q1 and |Q1] = |Qa].

J, may be obtained as follows. Let Qo9 and Q; be the
equivalence classes containing 0 and 1, respectively. Q¢ < J,,
and Q; = J — J,. Note that 0 = min{i|i € Qo} and 1 =
min{i|k € 0y}. If Oy u Q) # J, let j be the minimum index
not in Qo U Q. From observation 2) it follows that j© ¢ Q,
U Q). Let 0, and Q3 be the equivalence classes containing j
and j©, respectively. Q, u Q5 defines another cycle of G(D).
We may put either Q5 or Q3 into J,,. For definiteness we shall
put Q, into J,,. Note that j = min{i|i € Q,}and j© = minfi|i
€ Qs}. By repeating this process, J,, can be obtained. It is ap-
parent that the resulting J,, satisfies properties 1), 2), and 3)
of a matching. One should also note that from the preceding
discussion it follows that if min{i|i € Q} is even, then the ele-
ments of Q are in J,,, otherwise they are in J — J,,. For the
example of Fig. 3, we obtain J,, = {0, 2, 4, 7}.
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In summary, to obtain J,, we need to first partition J into
equivalence classes. Next, each element of J must find the
minimum element in the equivalence class it is in. If the min-
imum element in the class containing output  is even, then i
€ Ju. Otherwise, i ¢ J,,. From J,,, the switch settings for stages
0 and 2n — 2 together with the permutations D, and D; can
be obtained. The remaining switch settings can be obtained
by repeating this process on D, 'and D,;. Our algorithm will
obtain the switch settings for B, and B, in parallel.

First, let us see how the equivalence classes may be deter-
mined. The algorithm we are about to describe will represent
each equivalence class as a cycle. Nodes in a cycle will be linked
together using a field R. R(i) denotes the link field in PE(3).
Initially, the permutation D is distributed over the NV PE’s in
the CIC such that D(i) is in PE(i). Let j be any output ter-
‘minal. j and r = D((E(;))®) must be in different equivalence
classes, and j and r(® must be in the same equivalence class.
As an example, consider output 7 of Fig. 3. E(7) = 6, (E(7))©
=7,and D(7) = 1. Outputs 1 and 7 cannot get their inputs
from the same B(n — 1) network. So outputs 0 and 7 (and also
1 and 6) must get their signals from the same network and so
must be in the same equivalence class. Procedure EQUIV sets
R(@) = r© for every j. r© is as defined above. Note that since
D and E are permutations, r(® is different for different j’s.
This ensures that the resulting R values will define a cycle
structure.

line  procedure EQUIV
//determine equivalence classes//
global arrays R, D, E
| R(i):= (D(@i))©®
2 R(i©®) < R(i)
3 (E(D(i)), R(D(i))) < (i, R(i))

end EQUIV
Algorithm 1

In specifying our algorithms, we have made use of two kinds
of assignment statements. Those using the operator “:="" de-
note assignments local to a PE or to the control unit. Those
using the operator “<—” denote assignments requiring some
routing through the PE interconnection network. For any in-
teger i, ip and i %) are as defined earlier, and (i), denotes the
integer with binary representation i i,—; - - - i,.

Since the inverse permutation £ is not known, procedure
EQUIV computes R in a slightly different way than described
above. For any input i, we know that D(i) and (D(i(©))©
must be in the same class. So we set R(D(i)) to (D(i(®))© jn
line 3. (Observe that for j = D(i), 7O = (D(i9))(©.) In line
3 we also compute the inverse permutation E. This is needed,
later, to obtain the switch settings and D; and D,,. Fig. 5 shows
the cycles resulting from an application of procedure EQUIV
to the example of Fig. 3. The time complexity of EQUIV is
0(1).

Having seen how to obtain the equivalence classes in the
form of cycles, we proceed to the algorithm that finds the
minimum element in each class. In order to describe this al-
gorithm, we need to introduce the concept of a 2%-block of
PE’s. A 2*-block of PE’s consists of 2% PE’s whose indices
differ only in the least significant k bits. Thus, PE(i * 2%) -+,
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Fig. 5. Cycles corresponding to Fig. 3.

PE(i % 2% + 2k — 1) define a 2*-block for each i,0 < i < 2n—k
(recall that n = log V). The concept of a 2*-block is important
because when we are computing the switch settings for a B(k)
network, the corresponding D vector will be distributed over

"' a 2k-block of PE’s. Each 2*-block of PE’s will therefore be

computing the switch settings for a different B(k) network and
the cycles obtained by procedure EQUIV will be localized to
the 2%-blocks (i.e., no cycle can cross a block boundary).
Moreover, no R cycle in a 2%-block can be longer than 21,
Procedure LEAST (k) computes M (i) such that M (i) is the
smallest element in the class (or cycle) containing i, 0 < i <
N. It assumes that cycles are localized to 2*-blocks and that
no cycle is longer than 21,

line  procedure LEAST(k)
global arrays R, M, array T
1 M) =i .
2 forb :=0tok —2do
3 (T(@i), R(i)) < (M(R(i)), R(R(i)))
4 M(i):= min{M (i), T(i)}
5 end
6 end LEAST

Algorithm 2

[t should be easy to see that after iteration b of the for loop,
R(i) points to a node originally 26*! units away from i (dis-
tance is measured along the cycle containing i with successive
nodes on a cycle being one unit apart). Also, after iteration b,
M (i) is the minimum index among nodes up to 26+! units away
from i initially. Consequently, following iteration b = k — 2,
M (i) is the minimum element on the cycle containing i. The
complexity of procedure LEAST is 0(k).

Procedure SET__UP is the complete algorithm to determine
the settings of all switches in B(n). D(0:N — 1) is the desired
input-output permutation. The algorithm sets S(i, j) = 0 or
1 depending on the required state of switch i of stage j, 0 < i
<N/2and 0 <j < 2n —2.1tis assumed that S(i, 0:2n — 2)
are memory cells associated with PE(i), 0 < i < NV/2. If this
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much memory is not available, then the PE’s can output the
switch settings of each stage as they are determined. Each it-
eration of the loop of lines 2 to 15 determines the settings for
the first and last stages of all the B(k) Benes networks in the
decomposition of B(n) (see Fig. 1). Thus, in the first iteration
(i.e., when k = n) the switch settings for stages 0 and 21 — 2
are determined. The permutations D; and D, are also deter-
mined. In the next iteration the settings for stages 1 and 2n —
3 (i.e., the first and last stages of both the B(n — 1) networks
of Fig. 1) are obtained, and so on. When determining the
switch settings for the first and last stages of all the B(k)
networks, PE(2%+),- -, PE(2%i + 2% — 1) represent the ith
B(k) network (indexing top to bottom in a stage), 0 < i <
27—k Tn each 2* block, D specifies the permutation to be re-
alized by the corresponding B(k) network. That is, {D(2%i),
«++, D(2%i 4+ 2k — 1}is a permutation of {2k, - -+, 2k + 2k
— 1}. Note that 2%+ is the index of output “0” of the ith B(k)
network and (2%i)g = 0. As a result of this, our policy of
routing cycles with an even least element through the upper
B(k — 1) network can still be applied. In SET__UP we use
rule R1 to determine the switch settings for the last stage of
each B(k) network. Rules R2-R4 are replaced by the fol-
lowing equivalent rules (when k = n = log N):

R2: S(i/2,0) =iy, D) € J,
R3": D,(i/2) = D(i)/2,D(i) € J,
R4 Di(N/2+i/2) = N/2 + D(i)/2, D(i) ¢ J,.

When k < n, rules R3-R}; must be applied with respect to each
2k-block.

line procedure SET__UP(n)
//set up the Benes network B(n)//
global D(O:N — 1), M(O:N — 1), E(O:N — 1),
SO0:N/2—-1,0:2n—2)
1 k:=n
2 loop //set__up stages s and 2n — 2 —s//
3 s:=n—k //D defines permutations for
each 2k-block//
4 call EQUIV
5 call LEAST (k) ;
6 M@ := (M@)o //set M(i) to 0 if output
ielJ,//
7 F(E(i)) < M(i)
8 S(i/2, s) < ig, (F(i) = 0) //first stage//
9 if k£ = 1 then exit //go to line 16//
10 S@i/2,2n — 2 — 5) < ip, (M(i) = 0) //last
stage//
11 D(iO®) < D(i), (F(i) # io)
12 D(ip—y *** igdoig—1 * - i1) < D(i)
13 D(@) := ip—1:4—1(D(E))k-1:1
14 k:=k-—1
15 repeat //gotoline2//

16 end SET__UP

Algorithm 3
Line 4 determines the equivalence classes for the permu-
tation D. There is no need to explicitly consider the 24-blocks
of D, as D does not cross 2%-block boundaries. Line 5 deter-

mines the least element in each equivalence class and line 6
records if the least element is even (M (i) = 0) or odd (M (i)
= 1). If the least element in an equivalence class is even, then
all elements in that class must be routed through the upper B(k
— 1) networks. Line 7 sets F such that F(i) = 0 iff input i is
to be routed through an upper B(k — 1) network (i.e., D(i) €

Ju). This makes it easy to incorporate rules R2’-R4’. The
construct F(i) = 0 of line 8 is a mask. Thus, this line of the
algorithm is executed only on those processors i for which F(i)

= 0. In line 8 the switch settings for the first stage of all B(k)

networks are obtained (see rule R2’). When k = 1, the B(k)
networks have only one stage and line 9 terminates the loop.
When k # 1, the switch settings for the last stage of all B(k)

networks are obtained in line 10 (see rule R1). Line 11 updates
D so that D(i) corresponds to a “destination” for an upper B(k
— 1) network if i is even. This “destination” is relative to the
B(k) network and not to the individual B(k — 1) networks.
Line 12 routes the D values to PE’s whose index corresponds
to the left-hand side of R3” and R4’. This is essentially a divi-
sion by 2 within 2%-blocks. Line 13 replaces each D(i) by the
quantities on the right-hand side of R3’ and R4’. Again, note
that R3’ and R4’ are to be interpreted as being carried out on
each 2%-block (or equivalently for each B(k) network). For
the ith 2%-block the indices are 2%, 2k + 1,--- 2k + 2k
— 1. A division by 2 requires us to shift bits k — 1,--+, 1 one
position right and define the new bit k — 1 to be zero. Adding
2k=1 requires changing bit k — 1 to 1. One may verify that
lines 11 to 13 implement R3” and R4’ for each B(k) network.
The complexity of SET__UP is readily seen to be 0(n2) =
0(log? N). This is due to calling LEAST in line 5.

We now consider an example to illustrate how SET__UP
works. Letn =3 and D = (0, 2, 4, 6, 1, 3, 5, 7). The equiva-
lence classes are {0, 3}, {4, 7}, {1, 2}, and {5, 6}. J,, = {0, 3, 4, 7}.
If we define I,, = {i| D(i) € J,} to be the set of inputs that must
be routed through the B, network, we have I, = {0, 2, 5, 7.
Consequently, S(,0) = (0,0,1,1),S(,4) =(0,1,0,1),D, =
0,2,1,3),D,=(5,7,4,6),and D = (0,2,1,3,5,7,4,6). The
equivalence classes for the B(2) networks are {0, 3}, {1, 2}, {4,
7},and {5, 6}.SoJ, =1{0,3,4,7},S(,1) =(0,1,1,0),S(,3) =
(0,1,0,1),and D = (0, 1, 3, 2, 5, 4, 6, 7). This yields S(, 2) =
(0, 1, 1, 0). Fig. 6 shows the resulting switched network.

ITII. SET-UP ALGORITHMS FOR MCC’s, CCC’S, AND
PSC’s

When PE’s are not directly connected to every other PE, the
data transfer steps in procedure SET__UP could take more
than 0(1) time. In general, lines 7, 8, 10, 11, and 12 of
SET__UP together with lines 2 and 3 of EQUIYV and line 3 of
LEAST can be accomplished by means of a sort. For example,
to obtain the routing required for line 7 of SET_. UP we can
create the records (E(i), M(i)) in PE(i), 0 < i < N, and then
sort these records on the field E(i). The results of the sort is
that record ( E (i), M (i)) will reside in PE(E(i)) following the
sort. Similarly, for line 8 we set up the record (i /2,ip) in PE(7)
if F(i) = 0. If F(i) # O then the record (e, ) is set up.
Sorting on the first field will result in the io values being routed
to the correct PE’s. Only line 3 of LEAST cannot be handled
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Fig. 6. Set up for perfect-shuffle permutation.

by a single sort scheme (i.e., the scheme for lines 7 and 8 of
SET__UP). Line 3 of LEAST can be carried out using two
sorts, one for each of the following instructions:

1) V(R(i)) <i

2) (T(V (i), R(V(i))) < (M(i), R(i)).

If Sy is the time needed to sort on an N PE SIMD com-
puter, then the complexity of SET__UP using the above sim-
ulation becomes 0(Sy log2 N). Some speed-up can be obtained
when PE(i) is directly connected to PE(i(®) (as is the case for
MCC’s, CCC’s, and PSC’s). In this case line 2 of EQUIV and
line 11 of SET_UP require only 0(1) time and a sort is not
needed. Also, line 3 of LEAST can be implemented as
below: -

3.1 V(E®) < (R@E))©
32 (T(V(@D), R(V())) < (M(), R()).

The correctness of 3.1 as a replacement for 1) above can be
shown by establishing that R(i) = j implies R(j(®) = j©
during all iterations of LEAST. One may easily verify that this
is true for the example of Fig. 5. We leave it to reader to es-
tablish the correctness of this statement for all permutations
D. Substituting into 3.1, we see that 3.1 simply sets V(R(j(®))
= j(O for all j. This is equivalent to 1). Hence, line 3 of LEAST
needs only one sort (step 3.2) and a direct data transfer (step
3.1).

Additional sources of speed-up are lines 8 and 10 of
SET__UP. Rather than keep S(i, j) on PE(i), we could keep
S(i, j) on PE(2i), 0 < i < N/2.1If this is done, lines 8 and 10
become

8 S3,s):=F@), (io=0)
100 S, 2n—2—s):= M), (ip = 0).

The correctness of 8’ and 10’ as replacements for 8 and 10
is readily seen by recalling that F(i) = 1 — F(i©®) and M (i)
=1—-MGEO)foralli,0 <i<N.Note that lines 8’ and 10
each require only 0(1) time.

Sorting on an N PE CCC and PSC takes O(log2 N) time [1].
Hence, B(n) can be set up in 0 (log* N) time. If N1+1/k PE’s
are available then we can sort on a CCC and a PSC in 0(k log
N) time [3]. In this case B(n) can be set up in 0(k log? N)
time.

It takes O(V!/2) time to sort on an N1/2 X N1/2 MCC ([2]
and [8]). Hence, the preceding discussion implies that
SET__UP can be run on an MCC in O(V!/2 log? N) time. The
computing time can be reduced to O(N'!/2) by making the

observation that during iteration k of the loop in procedure
SET__UP, the data movement required in lines 4, 5, 7, and 12
is local to the 2%-blocks. The sorts necessary to implement lines
4 (i.e., line 3 of EQUIV), 7, and 12 can therefore be restricted
to sort only 2%-blocks. If the PE’s are indexed in “shuffled
row-major” order, then a 2%-block of PE’s forms a 2Lk/21 X
2[%/21 region of the N1/2 X N1/2 PE array (see [4] or [6]). The
sorting algorithm of [8] is easily modified to sort all 2*-blocks
ina N1/2 X N'/2 MCC in 0(2*%/21) time when shuffled row-
major indexing is used.

Therefore, using shuffled row-major indexing for the MCC,
lines 4, 7, and 12 of SET__UP each require 0(2[%/21) time.
Using the algorithm of Nassimi and Sahni [6] for finding the
connected components of degree 2 graphs, procedure LEAST
can be implemented on an MCC so as to have a complexity of
0(27%/21), And, using 8’ and 10’ in place of lines 8 and 10, the
data movement in the remaining lines of procedure SET__UP
take only 0(1) time. Hence, iteration k of the loop takes
0(27%/21) time. So the complexity of SET__UP on a two-
dimensional MCC is

0 ( 5 2fk/21) = 0(272) = O(N/2).
k=1

IV. CONCLUSIONS

We have shown that while Waksman’s set-up algorithm
appears to be highly sequential in nature, it can in fact be
parallelized. Our parallel set-up algorithm for an N X NV Benes
network has a complexity of 0(log* N) on an N PE PSC or
CCC. If N1+1/k PE’s are available, then only 0(k log3 V) steps
are needed. On an N!/2 X N1/2 MCC, our algorithm will have
complexity O(N1/2).

It should be pointed out that the above analysis has been
carried out under the same assumptions as used in [2] through
[8]. In practice, one would probably use logic with a fixed
fan-in and fan-out. Hence, one would experience an 0(log n)
logic delay per instruction. Therefore, it is necessary to mul-
tiply all our times by a log n = loglog N factor.
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