The Journal of Supercomputing, 2, 435-448 (1988)
© 1988 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Balanced Bin Sort for Hypercube
Multicomputers*

YOUNGJU WON' and SARTAJ SAHNI
University of Minnesota

(Received January 1988; final version accepted August 1988.)

Abstract. We propose a balanced bin sort for hypercube multicomputers. This sorting algorithm has an
empirically measured expected run time that is greater than that of hyperquicksort but less than that of
bitonic sort. Also, its space requirements are less than that of hyperquicksort but more than that of bitonic
sort. So, it is useful in situations in which there is some excess memory but not enough to run hyperquick-
sort.

1. Introduction

Sorting is a fundamental operation that arises in many applications. While several
researchers have studied sorting on hypothetical parallel computers, only a limited
amount of work has been published on commercially available parallel computers.
Most of the work using theoretical models has been for synchronous SIMD parallel
computers. Further, this work has generally assumed the internode communication
cost to be comparable to that of a basic arithmetic operation and has also assumed
the availability of as many computation nodes as can be gainfully used. In particular,
the number of nodes required by most of the proposed sorting algorithms for
theoretical models increases as the number of elements to be sorted increases. Com-
mercially available parallel computers, on the other hand, tend to be asynchronous
MIMD computers; have a limited number of nodes; and have an internode commun-
ication cost that is significantly higher than that of a basic arithmetic operation.

Lakshmivarahan et al. [1984] reviews the sorting literature as it relates to abstract
models of parallel computation. Cole [1987] develops an O(log n) merge sort
algorithm to sort n elements on an n PE (processing element) computer. Felten et al.
[1986], Seidel and Ziegler [1987], Seidel and George [1987], and Wagar [1987] consider
sorting on existing hypercube computers.

Seidel and Ziegler [1987] assume that node 0 of the hypercube contains the data to
be sorted initially and that the sorted data resides in this node at the end. They present
two bitonic sort algorithms and one quicksort algorithm. The two bitonic sort

* This research was supported, in part, by the National Science Foundation under grants DCR 84-20935
and MIP 86-17374.
+ Dr Youngju Won’s current address is P.O. Box 77, Gongneung-Dong Nowo-Gu, Seuol, Korea 139-799.

436 Y. WON AND S. SAHNI

algorithms differ only in how the data within a processor are sorted. One uses a heap
sort and the other uses a quicksort. The parallel quicksort algorithm begins with data
in node 0. The median of the data keys is found and used to split the data into two
halves. The larger half is sent to the neighbor of processor zero along the dimension
of the hypercube d. The two halves are sorted independenly using a d-1 dimension
hypercube. This is done recursively. When the hypercube dimension becomes 0, each
PE uses quicksort to sort its data; then the processors send their sorted data back to
processor 0.)

Wagar [1987] develops a different version of parallel quicksort. This algorithm,
called hyperquicksort, assumes that the data to be sorted are initially in the host
processor. The host initially distributes the data evenly over the p = 29 nodes of the
hypercube. Node 0 of the hypercube computes its median key K and broadcasts it to
the remaining processors. The data elements are split into two according to whether
they are less than or equal to the splitting key K or greater than it. The first set of
elements is routed to one half of the hypercube and the second set to the other half.
The two half hypercubes sort their data in parallel and recursively.

While hyperquicksort has the least average running time of the proposed hypercube
sort algorithms, it can guarantee completion of the sort only when almost all the data
fits into the local memory of a single hypercube processor. This drawback exists
because even though the initial distribution of data to the hypercube processors is
even, the subsequent division into two subcubes may not be. In fact, it is possible that
all elements in processors 1, 2, ..., p—1 are larger than the splitting key K and so must
be accommodated in (p/2) processors. At the next level, it may be necessary to
accommodate all these elements in (p/4) processors, etc. Another shortcoming of
hyperquicksort is that it does not leave the sorted elements evenly distributed across
the p processors. This is a direct consequence of the first shortcoming and is significant
only when the data are to be left in the hypercube for further processing. Note that
bitonic sort does not suffer from either of these problems.

Another variant of parallel quicksort is proposed in [Felten et al. 1986]; however,
we shall not discuss it here since its performance is slightly inferior to that of
hyperquicksort. Felten et al. [1986] have also developed bitonic sort and shell sort
algorithms for hypercubes. Their experiments indicate that bitonic sort is the faster
method when the number of elements to be sorted is close to the number of hypercube
processors, and that quicksort and shell sort perform better than bitonic sort when
the number of elements is considerably larger than the number of processors.

Bin sort was also proposed in [Felten et al. 1986] but not discussed in detail. Seidel
and George [1987] have proposed this method for sorting on hypercubes with d—port
communication. Such hypercubes permit near-simultaneous data transfers to up to d
nearest neighbors. The parallel bin sort algorithm of [Seidel and George 1987], called
min-max bin sort, is reproduced in Figure 1. This method has the same drawbacks as
hyperquicksort. Furthermore, as noted in [Seidel and George 1987], the expected
storage requirements of parallel bin sort are higher than those of hyperquicksort.
Experiments reported in [Seidel and George 1987] indicate that parallel bin sort on an

A BALANCED BIN SORT FOR HYPERCUBE MULTICOMPUTERS 437

1. Each node finds its minimum and maximum keys.
2. Each node sends its minimum and maximum keys to node 0.
3. Node 0 determines the global minimum and maximum keys and uses them to compute

p—1 splitting keys.

4. Node 0 broadcasts the p—1 splitting keys to all other nodes.

5. Each node uses the p—1 splitting keys it received in Step 4 to partition its subsequence
into p bins of approximately equal length.

6. Each node 7 sends bin 7 to node j and receives bin ¢ from node 5, (0<4,7<p,i#7).

7. Each node quicksorts the subsequence it contains. .

Figure 1. Parallel bin sort (reproduced from Seidel and George [1987]).

FPST-40 computer is slightly faster than hyperquicksort when p = 8 and n/
p = S12.

In this paper we propose modifications to min-max bin sort that improve its
performance. The resulting sorting algorithm, called balanced bin sort, has better
memory requirements. Experimental results obtained on an NCUBE hypercube
indicate that min-max bin sort and hyperquicksort require up to 30% more memory
per node than does balanced bin sort. Further, the run time of balanced bin sort is
comparable to that of min-max bin sort and only slightly greater (approximately
20%) than that of hyperquicksort. Balanced bin sort is faster than bitonic sort but
requires more memory.

2. Balanced Bin Sort

We consider some modifications of the parallel bin sort algorithm (Figure 1), which
affect the manner in which the p — 1 bin splitting keys are computed and also the
manner in which each node routes its bins to their destination processors. As in the
case of Figure 1, we assume that the data to be sorted are initially evenly distributed
over the p node processors.

To compute the p — 1 bin splitting keys, we use the algorithm shown in Figure 2.
First, the nodes use quicksort to sort their elements independently. Next, each node
selects a set of p — 1 splitting keys that will evenly divide its elements into p bins. This
can be done in O(p) time since the elements are already in sorted order. Next, the p
splitting key lists of the p processors are merged pairwise using a standard binary tree
scheme. See Figure 3 for the case p = 8. The merging is done by levels from the leaves
to the root.

Each right child sends its current list to its parent (which is also its left sibling). The
parent merges its current splitting list with the one received from its right child.
During the merge, the odd position keys of the result are retained while those in even
positions are discarded. The merge at each level can be done in O(p) time. The total
merge time is therefore O(plogp). The final splitting list at the root node 0 becomes

438 Y. WON AND S. SAHNI

PROCEDURE SplittingKeys;
Step 1: Each node sorts its (n/p) elements using quicksort.
Step 2: Each node selects p—l keys from its (n/p) elements. These correspond to the

n :
(__2) X i-th elements, 1 < ¢ < p, in the sorted list of step 1. These form the local

p ,
splitting list S of the node processor.
Step 3: The local splitting lists of the p processors are merged using a binary merge tree.
During each merge, two splitting lists of size p—1 are merged. Only the keys’in the
odd positions of the result are retained. Hence the merged list has exactly p—1 keys

also.

Step 4: Node 0 broadcasts the final list of p—1 splitting keys to the remaining p—l proces-
SOTS.

END SplittingKeys;

Figure 2. Algorithm to determine bin splitting keys.

the splitting list for all nodes. This list is broadcast to the remaining p — 1 nodes in
O(plogp) time (logp transmissions of p elements each).

Once the nodes have received the common splitting key list, they partition their
elements into p bins such that bin i/ contains all elements with keys in the range (k;,
kis1), 0 < i < p. The splitting key list is k, k,, ..., k,_, and we set kK, = — oo and
k, = co. This partitioning into bins can be done in min {plog n/p, n/p} time since the
elements are in sorted order (cf. step 1 of Figure 2). Let the p bins in processor i be
by, by, ..., b, . The elements in bin b} need to be routed to processor j, 0 < j < p,
0 < i < p. In Figure 1, this routing is accomplished using a direct route. Two
alternatives to direct routing are one-way and two-way ring routing which are
described below.

In a one-way ring route, the p processors of the hypercube are viewed as a ring with
adjacent processors in the ring adjacent to the hypercube. To obtain the ring organiza-

Figure 3. Merge tree for p = 8 processors (arrows show direction of data transfer in step 3 of the algorithm
to determine bin splitting keys).

A BALANCED BIN SORT FOR HYPERCUBE MULTICOMPUTERS 439

000 001 011 o010 110 111 10

Figure 4. Ring organization for the case p = 8.

tion, the Gray code scheme of Chan and Saad [1986] may be used. Figure 4 shows
such a ring for the case p = 8. The number inside a node is the processor index. The
one-way ring algorithm to be run on each node is given in Figure 5. In this algorithm,
each node performs three tasks simultaneously.

1.Receives data from the processor/node that is one unit clockwise from itself.

2.Sends data to the processor/node that is one unit counterclockwise from itself.

3.Merges data received in task 1 above with data in the bin having the same destina-
tion as that of the received data.

As an example, consider processor 2 in Figure 4. It initially sends the bin destined
for processor 3 to processor 6. Simultaneously, it receives and merges the bin destined
for processor 1 from processor 3. Thus, when processor 2 forwards the bin for
processor 1 to processor 6, it really forwards the result of merging the bins of
processors 3 and 2 that were destined for processor 1. In turn, when processor 6
forwards to processor 7 the bin destined for processor 1, it forwards the result of
merging these bins from processors 3, 2, and 6. Likewise, when processor 2 forwards

PROCEDURE OneWayRingRoute;
Step 1: ¢ :=processor index.
r :=index of processor p—2 units counterclockwise from ¢ on the ring.
s :=index of processor 1 unit counterclockwise from r.
pre :=index of processor 1 unit clockwise from processor ¢.
nezt :=index of processor 1 unit counterclockwise from ¢.

Step 2: Repeat, in parallel, steps 3, 4, and 5 until only the bin for processor g is left in proces-
sor g, Steps 3 and 4 have stopped and Step 5 is complete.

Step 3: Initiate a receive of a packet of the bin destined for processor r from processor pre; if
there is no such packet then set r to the processor that is clockwise from the current
r and repeat Step 3. When r =node clockwise from ¢, stop executing this step.

Step 4: If a request for a packet is received from processor next then send the next packet
destined for processor s; if there is no such packet, send an end signal and set s to
the node clockwise from the current s. When s = ¢, stop executing this step.

Step 5: Merge the packet (if any) received in step 3 with this processor’s bin that is destined
for the same processor.

END OneWayRingRoute;

Figure 5. One-way ring routing.

440 Y. WON AND S. SAHNI

Processor index

0 1 3 2 6 7 5 4

— — — — (Direction of communication) — — — —

0 F: 8 2 6 7 B
b3 byl L] 7 b7) bg) b3) i)
ii 0p 4 10 8yt 28 618 76 57 455
bbi) b6y bobg! 167671 1bgby 1boog1 1bgbg) 16367
. Opdp s 1p0p 4 83 1p0 23 8p 1 6p 218 T 612 S5pTh6 45517
{b7b7b1| lbsbsbsl [b4b4b4] (bobobol R [bxbxbl} [bababsl [bzbzb'z] [bababﬂl

6%4b°07) (bXb%46%) (bSh1b%h4) (bBSBIbO) (% EhShI) (bTBOBEES) bohThb%) (p4b%hThE)

666 6 7777 5568665 4 4 4 4 0000 ol i 3333 2222

0545371 6, 130545537, 8313054 3 5, £585 130 g 4 6,88 110, 768,81 5y 765218, 4y 5 76 8,
1bb5hoba by [bgdebgbaby 1870785703 [bsbsbsbsbsl [b4b4b4b4b4] ‘bobubobobd (bbb by 1b3bbbaby

01 4p 537 1,01 455 8y 15 0; 4 2p 8110 6p 83 83 1 7y 6128 5, 71 61 8 4p 5T 6
{bSbSbSbs {b2b2b2b2 [bdbﬂbﬂbe 1,77b7b7'77 [bsbsbsbs [64b4b4b4 [bobobobo [blblblbl
6; 8 T3 6 57 455 0p 4 130 81 £ 8
babsl b2b2] bﬂbol b7b7] bsbél b4b4] bObol blbl]

vii
[bfb:bfb: {bébgb‘sbg [bgbébgb; (bﬁb:b;bg [bgbgbjb; {b;bgbgb: {bibibibi [bébgbgbg
6,2, 8 7.6, 2 5y 73 6 $3: 51 ¥ 0p4p 5 1; 01 4 83130 2; 8; 1
b1b1b1] bsbsba] b2b262] bebuba] b7b7b7] bébsbsl b4b4b4) bobobol

Figure 6. Data flow in one-way ring routing.

to processor 6 the bin destined for processor 0, it forwards the merging of the bins for
this processor from processors 1, 3, and 2.

When the algorithm terminates, each processor has received and merged from its
clockwise adjacent processor the merge of its bins from the remaining p—1 processors.
Figure 6 shows the data flow assuming a synchronized model. 5} refers to the bin
initially in processor i that is to be routed to processor j. The notation [] refers to
the merge of the bins in brackets.

If we assume a uniform distribution of keys, then each b is expected to have n/(p*)
elements. Let s denote the number of elements in a communication packet and let ¢,
be the time needed to transfer a packet of size s to an adjacent PE. The total
communication/transfer time when one-way ring routing is used is

r=!in n 1
—t==—1—=]t.
Pl al o)

This can be reduced by using a two-way ring routing as shown in Figure 7. The
communication time for this is

o2 jp P21 g n
ot ety =,
igl PZS l igl st L4

A BALANCED BIN SORT FOR HYPERCUBE MULTICOMPUTERS 441

Processor index

0 1 3 2 6 7 5 4

— — — — (Direction of communication) — — — —

0 8 2 2 7 5 4

tbg) b7 byl b3 tby) (b7 (b3) (39

: Op 4 130 81 £ 8 §p 2 T 6 5p7 4p5
[6262] [bebc] [b7b7] [bsbsl [b4b4] [bobo) [b1b1] [bsbal
i Splp0 2p8p1 6 2 8 Tp 61 2 SpTE 6 4p5p7
[bgbgb::] [b;bgb;] Ibaboba] [b7b7b7] [bsbsbsl [b4b4b4] {bobobo] [blblbll

R{TI pbhg ppbd tbgbgbeber tbgbielbiy bbby BBDL bl

+— « + + (Direction of communication) <+ 4+ +— ¢

0 1 s £ 5 7 5 4

b1 byl b1 bl b1 b b1 (b3

w 88 236 6p 7 785 5p4 4p0
bobi) (b33 bbg! LM (bgbg! (b1 L34 (b42)

vii 0 8 1p 8, ¢ Sp2p 6 21637 EpThS Th5h4 Sp4p0 4p0p1
[b4bib4] [bObObO] [blblbll [bsbsbs] [beQbQI Ibebebcl [b7b7b7l {bsbsbsl

Figure 7. Data flow in two-way routing.

The communication time for direct routing depends on the router used by the
*hypercube and on the frequency with which routing collisions occur. Since no bin has
to travel more than logp hops, n/(p*s)logpt, is a lower bound on the transfer time.
Another lower bound is obtained by considering the time required by a node to
receive the p—1 bins being transmitted to it. Since a node has only logp communication
lines, it takes at least n(p-1)/(p*slogp)t, time to receive the p-1 bins. Hence, n/
(p*s)ymax{logp,(p-1)/logp}t, is a lower bound on the communication time.

In synchronous hypercube computing models, routing problems such as our bin
routing problem are often solved by using a recursive hypercube subdivision scheme.
In this scheme, the hypercube is considered as composed of two subhypercubes. This
is done by partitioning along one of the hypercube dimensions. Each node in a
subhypercube sends its p/2 bins that are to be routed to nodes in the other subhyper-
cube to its neighbour node in the other subhypercube (the neighbor is connected to
it on the partitioning dimension). All nodes combine the received bins with their
previous bins and then the two subhypercubes independently route the p/2 bins in
each node to their destination nodes. When keys are uniformly distributed, the
communication time for this scheme is nlogp/(2ps)t,. This is greater than the lower
bound for direct asynchronous routing.

While the modified bin sort retains the shortcomings of the original bin sort (that
is, the sorted elements are not evenly distributed and the method may fail to complete

442 Y. WON AND S. SAHNI

2800

2400 -

2000 t+

1600 +

800 -

400 -

0] ! I L
0 1 2 3 4 5 6

dimension —s

----------- Bin sort with direct routing
s Bin sort with 2-way ring
—_— Bin sort with 1-way ring
_____ Bitonic sort

_____ Hyperquicksort

data size =64K

Figure 8. Performance of hypercube-to-hypercube methods.

the sort unless adequate memory is available in each node), their impact is less severe.
To see this, consider the following analysis. Let x = n/(p*) be the number of elements
that will fall into each bin if a node uses its p—1 splitting points (Step 2, Figure 2) to
partition its (n/p) elements into p bins. If the p—1 splitting points that remain after
the first level merge of step 3 are used on the (2n/p) elements in the two nodes
contributing the splitting points, then at most 3x elements can fall into one bin. To
see this, let 4 and B denote the sorted sets of p—1 splitting points that are to be merged.

A BALANCED BIN SORT FOR HYPERCUBE MULTICOMPUTERS 443

Let C denote the sorted set of p-1 splitting points that remain following the merge and
elimination. The worst case arises when two adjacent splitting points of C are adjacent
splitting points in 4 (or B). In this case, a splitting point of B (4) lies between these
two points of C. There are x elements of A (B) between these two points and at most
2x clements of B (4) between them. When the p-1 splitting points computed at the
root of the merge tree (see Figure 3) are used, at most 3'°%” x elements can fall into
a bin. So, to guarantee a successful sort, it is necessary for each processor to have
enough memory to accommodate 3°*”(n/p*) = (p°*~')(n/p) ~ n/p"*'* elements.
When a bitonic sort is used, space for only (n/p) elements is needed. When hyperquick-
sort is used, space for almost n elements is needed to guarantee successful completion.
Hence, a balanced bin sort requires p*** times the space required by bitonic sort and
p~*" times that required by hyperquicksort.

The worst case storage requirements of bin sort can be reduced at the expense of
using more initial splitting keys and changing the strategy to compute global splitting
keys. Suppose each node generates ap - 1 splitting keys, @ > 1 that evenly split its
data into ap bins. Then a total of ap® — p keys are generated by the p processors. These
may be transmitted to node 0 and sorted. Next, p — 1 of these ap® - p keys are
determined by selecting keys at positions i such that i mod (ap) = 0. The new keys
have the property that if the entire n elements are partitioned into bins, then at most
(I + 1/a)(n/p) elements can fall into a bin. To see this, note that when ap — 1 splitting
keys are generated by each node, the number of elements in each nodes bin is n/(ap?).
When all ap>p splitting keys are collapsed into p-1, we combine at most ap full node
bins and at most p partial node bins. The total number of elements is therefore
(ap + pn/(ap®) = (1 + 1/a)(n/p). So if each processor has this memory capacity, the
sort is guaranteed to succeed. Also, the degree of imbalance in the final data distribu-
tion is reduced. Note, however, that as a is increased, the time to generate the splitting
keys increases because of the increased communication to node 0. This may be
compensated for in the bin routing stage since bins will tend to be of a more uniform
size.

3. Experimental Results

The expected performance of the candidate methods for hypercube-to-hypercube
sorting was measured on an NCUBE/7 hypercube computer with 64 processors. We
experimented with the following methods.

1. Modified bitonic sort. This is the algorithm of [Seidel and Ziegler 1987] that uses
quicksort to do intranode sorting. This algorithm was modified as suggested in
[Won 1987].

2. Hyperquicksort. This is described in [Wagar 1987].

3. Min-max bin sort. This is the algorithm given in Figure 1. Direct routing was used
in all our experiments with this sort method.

4. Balanced bin sort. Three versions of bin sort were experimented with. In each, we

444

Table 1. Bitonic sort'.

Y. WON AND S. SAHNI

data size hypercube dimension
1 2 3 4 5 6
1K 80 42 24 14 12 13
2K 171 94 51 31 21 17
4K 362 207 113 68 45 39
8K 788 419 242 150 99 80
16K 1653 894 513 314 200 165
32K - 2055 1247 727 416 284
64K - - 2561 1533 883 570
128K - - - 3293 2012 1151
256 K - - - - 4202 2417
512K - - - - - 4915
+ time unit is one millisecond for all tables in this paper
Table 2. Hyperquicksort.
data size hypercube dimension
1 2 3 4 5 6
1K 71 42 21 17 14 11
2K 162 95 49 37 29 24
4K 331 211 113 66 43 35
8K 739 413 225 142 81 51
16K 1508 877 498 292 144 92
32K - 1985 1051 571 308 162
64K - - 2155 1194 612 329
128K - - - 2412 1224 681
256K - - = = 2523 1415
512K - - & - - 2872
Table 3. Min-max bin sort with direct routing.
data size hypercube dimension
1 2 3 4 5 6
IK 72 44 21 19 17 18
2K 161 92 52 44 33 24
4K 333 219 119 68 41 37
8K 746 422 238 140 81 55
16K 1521 887 496 292 145 94
32K - 1995 1085 574 371 263
64K - - 2158 1266 754 485
128K = - - 2654 1493 781
256K — - - - 2934 1661
512K - - - = - 3198

A BALANCED BIN SORT FOR HYPERCUBE MULTICOMPUTERS 445
Table 4. Balanced bin sort with direct routing.
data size hypercube dimension
1 2 3 4) 6
1K 74 45 25 33 * *
2K 162 96 57 53 * *
4K 349 209 112 92 78 *
8K 756 435 244 163 132 ¥
16K 1573 891 509 323 219 310
32K - 2012 1134 595 394 407
64K - - 2248 ’ 1294 770 513
128K - - - 2681 1515 795
256K - - - - 2962 1691
512K - - - - - 3247
*not applicable
Table 5. Balanced bin sort with one-way ring routing.
data size hypercube dimension
1 2 3 4 5 6
1K 72 43 34 38 * *
2K 165 95 59 62 ¥ ¥
4K 347 205 124 100 89 *
8K 765 434 274 209 152 *
16K 1588 915 604 434 309 277
32K - 2038 1267 815 493 396
64K - - 2609 1835 1018 790
128K - - - 3908 ¢ 2615 1422
256K - - - - S112 2915
512K - - - - - 5088
*not applicable
Table 6. Balanced bin sort with two-way ring routing.
data size hypercube dimension
1 2 3 4 5 6
1K 73 43 28 31 * *
2K 164 94 53 52 * %
4K 347 205 117 88 74 *
8K 761 419 237 158 141 *
16K 1582 875 501 319 214 195
32K - 1997 1101 578 383 341
64K - - 2215 1233 779 502
128K - - - 2546 1499 802
256K - - - - 2911 1618
S12K — - - = - 3249

*not applicable

446 Y. WON AND S. SAHNI

Table 7. Space required by balanced bin sort.

data size hypercube dimension
1 2 3 4 S 6
1K 108 114 119 121 * *
2K 109 114 115 120 * *
4K 110 115 122 125 119 *
8K 108 119 118 121 129 *
16K 111 110 121 119 128 - 131
32K - 116 126 129 133 135
64K - - 129 124 136 140
128K = - — 130 134 134
256K = = = — 135 139
512K = - - - - 138
* not applicable
Table 8. Space required by min-max bin sort.
data size hypercube dimension
1 2 3 4 5 6
1K 113 120 124 135 155 174
2K 111 118 121 129 152 167
4K 112 119 127 134 141 178
8K 113 123 129 136 148 179
16K 112 117 126 138 150 173
32K - 119 134 138, 156 175
64K - - 129 138 152 186
128K - - - 143 159 179
256K - - = = 155 177
512K - - —= - = 181
Table 9. Space required by hyperquicksort.
data size hypercube dimension
1 2 3 4 5 6
1K 115 122 128 140 168 188
2K 112 124 129 134 171 201
4K 109 121 135 141 155 192
8K 114 125 138 148 158 186
16K 116 120 137 146 161 182
32K — 126 140 148 166 192
64K - = 135 149 159 188
128K - - - 150 167 196
256K = = - - 176 195

512K - - - - - 187

A BALANCED BIN SORT FOR HYPERCUBE MULTICOMPUTERS 447

modified the splitting key scheme to use ap — 1 keys with ¢ = 2. The transfer
packet size was min {512 bytes, n/2p*}. The three bin sort algorithms differed in the
routing scheme used: direct routing, one-way routing, and two-way routing.

The six algorithms were coded in FORTRAN. The average of the run times for
ten data sets for each value of n (number of elements) and d (hypercube dimension)
is reported in Tables 1 through 6. These times are plotted in Figure 8 for the case
n = 64 K. Of the three routing schemes studied for bin sort, direct routing and
two-way ring routing are very competitive. Both are significantly superior to
one-way ring routing. Balanced bin sort using direct or two-way ring routing has
a run time that is comparable to that of min-max bin sort.

Tables 7, 8, and 9 give the space required by balanced bin sort, min-max bin sort,
and hyperquicksort, respectively. This is given as a percentage with 100% being the
space required to store the input data. Thus, to sort the ten 512 K instances on 64
processors, the three sort methods required 1.38, 1.81, and 1.87 times the space
needed to hold the data assigned to each node initially. The space required by
balanced bin sort is consistently less than that required by the other two sorting
methods. Note, however, that bitonic sort requires no additional space; its space
requirements are 100% for all » and d.

4. Conclusions

In this paper, we have proposed a method to select splitting keys for use in a parallel
bin sort. While this takes more time than the schemes proposed earlier, the method
results in bins of a more uniform size. This in turn reduces the subsequent bin
routing time and the node memory requirements. The resulting bin sort scheme is
called a balanced bin sort. In our experiments, balanced bin sort with direct routing
took up to 5% more time than min-max bin sort with direct routing (for 64K or
more elements). However, min-max bin sort required up to 31% more space.
Balanced bin sort is recommended over min-max bin sort for those situations when
memory is limited.

Our experiments indicate that balanced bin sort with direct routing is faster than
bitonic sort but slower than hyperquicksort. However, its memory requirements
are less than those of hyperquicksort but more than those of bitonic sort. Balanced
bin sort is therefore recommended over hyperquicksort and bitonic sort for those
situations where there is enough memory to run it but not enough to run hyper-
quicksort.

References

Chan, T., and Saad, Y. 1986. Multigrid algorithms on the hypercube multiprocessor./EEE Transactions on
Computers, C-35 (Nov).

Bg: b

448 Y. WON AND S. SAHNI

Cole, R. 1987. Parallel merge sort. Ultracomputer Note No. 115, Computer Science Tech. Rep. No. 278,
Courant Institute of Mathematical Science, New York.

Felten, E., Karlin, S., and Otto, S. 1986. Sorting on a hypercube. Caltech/JPL, Hm 244.

Horowitz, E., and Sahni, S. 1986. Fundamentals of Data Structures in Pascal. Computer Science Press.

Lakshmivarahan, S., Dhall, S., and Miller, L. 1984. Parallel sorting algorithms. Advances in Computers, 23:
295-354.

Seidel, S.R., and George, W.L. 1987. A sorting algorithm for hypercubes with d-port communication.
Tech. Rept. Dept. of Mathematical and Computer Science, Michigan Technological University.

Seidel, S.R., and Ziegler, L.R. 1987. Sorting on hypercubes. Hypercube Multiprocessors 1987, SIAM.

Wagar, B. 1987. Hyperquicksort — A fast sorting algorithm for hypercubes. Hypercube Multiprocessors
1987, SIAM. .

Won, Y. 1987. Parallel solutions for design automation problems. Ph.D. dissertation, Computer Science
Dept., Univ. Minnesota.

