INFORMATION PROCESSING 86, H.-J. Kugler (ed.)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1986

373

VLSI ARCHITECTURES FOR BACK SUBSTITUTION*

Kam Hoi CHENG " and Sartaj SAHNI
Computer Science Department, University of Minnesota
Minneapolis, Minnesota 55455, U.S.A.

VLSI architectures involving unidirectional, bidirectional and broadcast chains as well as unidirectional rings are
examined for the back substitution problem. We develop designs with superior performance to earlier designs.

1. INTRODUCTION

VLSI architectures for a variety of problems have been
proposed by several authors. A bibliography of over 150
research papers dealing with this subject appears in {6}
In this paper, we are concerned solely with the back sub-
stitution problem. The inputs to this problem are a
non-singular lower triangular matrix A and a column
vector b. The objective is to determine the unique
column vector =z with the property Az = b.
Throughout this paper, we assume that A is n X n.
So, z and b are m X 1. The classical approach to
obtain z is to use back substitution. z is obtained using
the formula:

i-1
= (b; = 3 a;;%;) a5 , 1<i<n
=1
The ;s are computed in the order z,, z,, ..., 3,. VLSI

architectures for this problem have been proposed earlier

in {2}, {4}, {7}, and {8}.

The design of {2} employs a unidirectional chain of
processors. The data flow is left to right. The design of
Kung and Leiserson ({4}, {5} and {8}) employs a bidirec-
tional chain. Here, data is permitted to flow both from
left to right and from right to left. In {7} a ring archi-
tecture. Data can flow in only a single direction (either
clockwise or counterclockwise) around the ring.

We examine each of the above three architectures
here. In addition, we consider the broadcast chain used
in {3} and {1} (among others) for the matrix multiplica-
tion problem. To our knowledge, there has been no ear-
lier research on the use of broadcast chains for back sub-
stitution. A broadcast line has the property that data
put on this line becomes available at all PEs on the line
in O(1) time.

In evaluating our designs, we assume that the VLSI
system will be attached to a host processor via a bus.
The evaluation of a VLSI design should take the follow-
ing into account:

1. Bus bandwidth --- how much data is to be transmit-
ted between the host and the VLSI system in any
cycle? This figure is denoted by B .

2. Speed --- how much time does the VLSI system need
to complete its task? This time may be decomposed
into the times T¢ (time for computations) and Tp
(time for data transmissions both within the VLSI
system and between the host and the VLSI system).

One may expect that by using a very high
bandwidth B and a large number of processors P, we
can make T¢ and Tp quite small. So, Ty and Tp are
not in themselves a very good measure of the
effectiveness with which the resources B and P have
been used. Let D denote the total amount of data that
needs to be transmitted between the host and VLSI sys-
tem. The ratio

Ry =B * Tp /D

* This research was supported in part by the National
Science Foundation under grant MCS-83-05567.

+ Author’s current address is: Computer ‘Science Depart-
ment, University of Houston, Houston, Texas, USA.

measures the effectiveness with which the bandwidth B
has been used. Clearly, Rp > 1 for every VLSI design.

Let C' denote the time spent for computation by a
single processor algorithm. The ratio

Rg =P * Ty / C

measures the effectiveness of processor utilization. Once
again, we see that By > 1 for every VLSI design.

In evaluating a VLSI design, we shall be concerned
with T¢ and T)p and also with By and R, . We would
like By and Rp to be close to 1. Finally, we may com-
bine the two efficiency ratios By and Rp into the single
ratio R = Ry * Rp. A design that makes effective use
of the available bandwidth and processors will have R
close to 1.

The efliciency measure R as defined here is the
same as that used in {1} to evaluate VLSI designs for
matrix multiplication. This measure is also quite similar
to that proposed in g?} In fact, the two measures
become identical when =Tp.

For each of the designs considered in this paper, we
compute Ry, Rp and R. In several cases, our designs
have improved efficiency ratios than all earlier designs
using the same model. In comparing different architec-
tures for the same problem, one must be wary about over
emphasizing the importance of Ry, Rp and R . Clearly,
using P =1 and B =1, we can get
R = Rp = R =1 and no speed up at all. So, we are
really interested in minimizing T'¢ and T while keeping
R close to 1. Some of our designs reduce T, at the
expense of R .

2. BACK SUBSTITUTION
2.1. The Problem

Input: A lower triangular matrix A and an n
X 1 vector b .
Output: An n X 1 vector z such that Az = b.

Parameters: C = n(n +1)/2 ~ n?/2,
D =n(n +5)/2 ~n?/2.
2.2. Chain with O(n) Bandwidth

An n PE chain may be used as in Figure 1 (dashes indi-
cate no input). Each PE has one adder, multiplier and
divider. PE(j) computes z;. Row j of A (excluding
the elements beyond the main diagonal) is input to
PE(j) element by element beginning at time 7. PE(j)
inputs b; at time j. The computed z values flow to the
right and get output from the right end of the chain. A
formal description of the algorithm executed by each PE
is given in Algorithm 1. In this algorithm, the notation
Y;, Y€ {c,z,A } means register ¥ of PE({). The
correctness of this algorithm is readily established.

From Figure 1 and Algorithm 1, we see that max-
imum input/output occurs when ¢ = n. At this time, a
bandwidth of [n /27 4+ 1 is needed. The performance
figures for this scheme are P = n, B = rn /2-| 4= 1,
TC:27’Z“1, TD:27Z, RCN4, RDNQ and
R ~s8.

37\4 K H. Cheng and S. Sahni

by N ol -

02 431 = -
G5 Ga
as3 [P
Gg3
Qg =
Ba1
c e
Figure 1

for i —1to 2n — 1 do
do in parallel {Input/Output}
if i < n then ¢; + b;
else output z,
Aj —aj i1+ 0 +1)/2§j < min{i, n}
xj —x; <j<n
end
do in parallel /A
if ¢ oddthen[x[,/2]<—c[,/21 [/
c; +—c;-A]x],]%rz/2-|
else [c; «— c;-A; , 1< 7 < n]

j-1

end
end
output z,

Algorithm 1
2.3. Ring with O(n) Bandwidth

An examination of "Algorithm 1 reveals that at most
fn /2 -I PEs do useful work at any time. Hence, we may
double up the use of the first fn /2-| PEs by requiring
PE(7) to compute both z; and z; 4 [,/2]- In case n is
odd, PE(rn /2]) computes only zr, /5] For simplicity
in exposition, we assume that n is even zm case n is odd,
an extra column and row may be added to A and an
extra value added to b).

The input data pattern is'shown in Figure 2 and the
algorithm executed by each PE is given in Algorithm 2.
Once again, correctness is easily established. The perfor-
mance figures are P = [n/2], B = [n/2]+1,
To =2n -1, Tp =2n, Ky ~2 R, ~2 and
R ~ 4. So even though only half as many PEs are used
Ty and Tp are unchanged!

for 1 +1to 2n — 1 do
do in parallel {Input/Output}
if i < n then ¢ _1)mog ,,/2+1 — b;

Aj —h4j,i-j+0

J n/2,i-3j-n/2+0

i
(¢ +1)/2<]] +n /2<mzn {i,n}

case

1<i<n/2 :3; «— 25, 287<n/2
n/2<i<n :z; —z;_;, 2535 <n/2

. Ty Zpyo)
i>n tx; -3y, 257 <n/2
output z, s,
endcase
end

do in parallel
if ¢ odd then [k([i/21-1) mod n /2+1
Ty ey Sy
cj +— cj=A; *z;, jl=k]
else [c; «— c;-A;*z;, 1<j <n /2]
end
end

output z, /o

Algorithm 2

b-/:-ﬂ = - et

b, N

- i /2,1
Baf24+1,1 = e
Oa /2421 o

On/2+3,1

G2, n/2
On/2+1,0/241 . . (%]
Gs/242,8(242
%a/2+8,8/2+3

Figure 2 Gan
2.4. Bidirectional Chain With O(n) Bandwidth

Kung {4} has proposed an n PE bidirectional chain
architecture for the back substitution problem. The per-
formance figures for this architecture are: P = [n /2],
B=([n/2]+2 T¢c=2n-1, Tp =2n, Rg ~ 2,
Rp ~2and R ~ 4.

It is possible to improve the throughput of the
bidirectional chain by providing each PE with its own
divider that can function in parallel with the rest of the
PE. Our design requires n PEs and is as shown in Fig-
ure 3. The output is generated from the middle PE. The
PEs to the left of the middle PE compute all but the last
term needed for the even z;s. Similarly, the PEs on the
right compute all terms but the last needed for the odd
.'l:i S.

PE

610,4 810,56 Ggs 610 Ggs 895 6114
@10, 0 410, 7 Gg1 L4 ¢n,0 ¢11,5
G108 Gog 811, 8 81,7
@10, 9 @119
811, 10
Figure 3

The input data pattern "is quite regular. Assume
that the PEs are indexed as in Figure 3 with the middle
PE given the index 1. The first input to PE(:) is b; and
the second a;. Let A (¢,7) denote the (j -+ 2)th input
to PE(z). Then, A (1,1) = ay, A(1,2)= asz,
A(1,3) = au A(21)=ay,, A(B1)=0, etc. For-
mally, we have:

VLSI Architectures for Back Substitution 375

At 4 +1, 5> T =1
1, == g
(33 % +2 [+1-Tifely2 1,7 +1-lijels ¢t >1

where a;; = O for k < 1.

Each z; is computed using the formula

by ey, Gy 4,y
;= zy T o %y (1)
G Gy @i @i

G
Each term of the form —']—z] is obtained by comput;mg

ay;
a;; /a; in one cycle and then multiplying by =z;
next cycle.

§ in the

The ¢ registers hold the partial sums for (1); the Z
registers hold terms of the form a;; /a;; ; the D registers
hold the divisors a;;; and the e registers hold a single

—a;;

term of the form z;. The e registers are needed as,

11
often, a PE computes two terms of an z; . The first term
is saved in the e register and then combined on the next
cycle with the second term and the contents of the ¢
register. The functlonlng of the systolic system is
described formally in Algorithm 3.

zero all registers

c; +— b;, 1<:i<n
D; « a;, 1<¢<n
¢; +—¢; /D;, 1<:<n
{LetU~{3478111

V =1{2,5,6,9 10,13 14, }}}
for j—1ton do
do in parallel {Input/Output}
Ay =iy

A; — q +2, [G+i- Fiselye 1,5 +1- lijels

To 4 Ty, Jjze2
Ty T g i 23, 722
output z 4, 7 >2
if j oddthen (¢, «— ¢4, § > 3; D 1+—D,]
else [c, +—cyu D, <—-D
&G =% 8y, i >4, t(z +1)/2
D; _,+ Dy, t 24, [(F -1)/2
end
do in parallel
Ty+—cy~2, %z,

1f] odd then [¢; + (¢; + ¢;) - Z; * =z,
7€V and |_z/2_]<]
e +——2; * z;,
i €l and L(z+1)/2_|<]]
else [c; «— (¢; + ¢;) - Z, z;,
¢ € U and Ez/2_r
e ——2Z; * x;,
zeVand L(z+1)/2]<]]
Z,'4—A,-/D,', 1< <
end
end
oul’,put:x1

Algorithm 3

From Algorithm 3 and Figure 3, we see that
P=n, B=n+4+1 To=n+1 Tp=n +3,
Ry ~2, Rp ~2and R ~ 4.

The throughput cannot be further improved using
formula (1), as to compute z;, we need to know z; _,.
Hence z; can be computed, at best, one cycle after ; 1
has been computed. We can bring Ty down to o(n /2)
by computing two ;s each cycle using the formulae:

i-2q

; a
.) 1§ 7,1t —1
gy =~ R)
&7 j=1 % A
b; 4, i -1
= -—— b,
Ai; Gip Gy _q,i -1
P2 a0 G510y,
P -)
j=1 @i Gi; G5 1,4 -1

for ¢ > 1 and odd, and

b; a;
t 1,1 —1
= - b, ©)
Ay Gy @ _1,i -1
S8y gy
= Bl == e Yy
j=1 @i 5 G _1,4 -1
i, i —2 A, i-1% _1,i-2
= =)T _ o
(25 i G 1,4 -1
b; %i-1 Z; by,
= e 2ITT b e PEE
Qs Qi G 1,5 -1 A _2,i -2
’2‘33(Gj G _18_1,; L G _g ;),
- - il j
j=1 @i Qi O 1,4 -1 A —2,i-2
a: . a; a; .
1,1 —2 t,t -1 % —1,1 -2
where Z; = (-)
1 i G _ 1,5 -1

for ¢ > 2 and even.

First, , is computed as 2, =105,/ a,; and z, as

a
2 21 1
Ty~ — — —. Once T4 and T have been com-

a 22 211
puted, 23 and z4 can be computed. To compute zg, z,
is needed and to compute z,, z, is needed. So both z4
and z, can be output one cycle after z; and z,. In the
meantime, T 5 and T4 can start computation using z, and
T, In the next cycle, the computation of zg and T4 can
be completed using z, from the previous cycle. The
VLSI system that incorporates this uses more hardware
than ure 2.4 and is quite a bit more complex. We shall
not present the details here. We note that the method

‘may be extended to get a T'¢ of o(n /k) for any fixed k.

2.5. Broadcast Chain With O(n) Bandwidth

The architecture and data pattern are shown in Figure 4.
The algorithm used is given in Algorithm 4. The perfor-
mance figures for the broadcast chain are P = n
B——n Tczn TD:n+2R0N2RDN23nd
R ~ 4.

biay —= 1

Gg b 80 —=> 2

83008 bg 833 —=> 3

Gyg8400g byay —= 4

Gn,n—1 C e Oy30ag8a by 8y —> 0

z
Figure 4

One should note that each computation of Figure 4
takes tgyp + ftyyr + tpry time, while in all of our previ-
ous designs, a computation required only
max { tDIV’ tMUL -+ tSUB } where tD[V is the time to
divide, {ypy Is the time to multiply, and ¢gyg is the time
to subtract. The performance of the broadcast chain
may be improved slightly by overlapping divisions with
other operations. The new design is as in Figure 5.
Equation (1) is used to compute the z;s. The dividers
are loaded with a;. Each input to PE(¢) is divided by
a; at the divider and then transmitted to the remainder

376 K.H. Cheng and S. Sahni

D]' — ajj {input}

c; — by {input}

zy+—c¢y/ D,y

for i<—1ton —1do
do in parallel

broadcast 7; to z;, 7 >

output z;

A] — aj,) > {input}
end

do in parallel

gj «—(c; —Aj * z;)/D;, j =4 +1
cj +—c; —A; *zj, j>1+1
end
end
output T,

Algorithm 4

of the PE. The divisions take place in parallel with a
multiply and subtract operation in the same PE. As a
result of this, each computation step takes
max { tpsv, tsyp + tyyy } when Figure's is used ratlier
than fpyy + tgyp + tyyr . The performance figures
using Figure 5 are P =n, B =mn, Tg=n +1,
TD =n + 3, R, ~2 Rp ~2and B ~ 4.

PE

byay + * — 1

ay oy = * — 2
350y by 8y + * - l 3
0438408 byay . ‘9‘ . - ’ 4

[P s Y U + * = n

z

Figure 5

The R value of both the preceding designs may be
reduced to ~ 9/4 by using half as many PEs. For exam-
ple, the design of Figure 4 translates into that of Figure
6. The n /2 PE broadcast chain is first used to compute
Ty Tg oo Tnyo in exactly the same way as Figure 4 is
used when A is an n /2 X n /2 matrix. Next, the
remaining n /2 zs are computed by having the n /2 PEs
behave like the last n /2 PEs of Figure 4 with the
required z;s being re-input and broadcast. To compute
the first n /2 s, n /2 compute steps and n /2 + 2 data
move steps are needed. For the remaining n /2 zs, an
additional n compute steps and n + 2 data move steps
are needed. Hence, P =n/2, B =n/2+1,
TC - 311/2, TD == 3"/2 4+ 4, RC ~3/2, RD N3/2
and R ~ 9/4. This reduction in the B value has been
obtained at the expense of T and Tp which are now
both 50% larger than before.

This idea may be extended to the case of n /k PEs
for k any constant. - For example when k = 4, we get
P =n/4, B =n/4+1, Te =5n/2,
TD =5n/2+8, Rc N5/4, RD N5/4 and
R ~ 25/16. A further reduction in R has occurred at
the expense of Ty and Tp! Certainly, when k¥ = n,
P =1 and the scheme becomes the normal one processor
scheme with B = 1.

% — e 1 —
L3%] G20 Gsg 8y /2,8 /2
by by bs ba /2
i 83 asy Ga /2,1
o = ag G /2,2
Oy /2,8 /21
Gaj2+1,n/24+1 O%2/2+42,8/242 On/248n/2+3 Gun
b-/2+1 b-/2+2 b-/2+s by
8s/2+1,1 8a/2+2,1 8a/2+3,1 Ga1
Gs /2422 G /2432 Gg2
8 /2+3,3 Ga3
Ony
Gu/2+1,8/2 . . Gy5

Caf242,8/2+1
Ouf2+3,8/2+2

Gn, 5 —2

Ga,n—1

PFigure 6

2.8. o(n) Throughput With Unidirectional Data
Flow

The unidirectional chain of Figure 1 cannot be modified
to produce the n z;s in o(n) time. This is because it
takes o(n) time for z, to reach PE(n) and another o(n)
time to compute z, using one PE. While we have seen
several architectures that provide for o(n) computation
of the z;s, these either employed a broadcast capability
or required data to flow in two directions. Neither of
these capabilities is necessary for this.

We may compute the ;s in o(n) time using 2n — 2
PEs as in Figure 7. One PE is assigned to the computa-
tion of z; and another to that of z, Each of the
remaining #;s is computed using two PEs. The upper PE
of each such pair computes the terms involving z; for ¢
odd while the lower PE computes the even terms. Predi-
vision of the a;;s by a; as suggested by formula (1) is
done by each PE. The upper PE in the pair for z; com-

Gis
% 1. ..
putes U; = . b3 —]—xj when 2 is even and
A 1< i <%
7 “odd
s
1 . .
Uy= 2 z z; when 7 is odd. The lower PE
1<j <i @i
1 odd
. b; aj; o
computes L; = - z; when ¢ is odd and
Qi 1< 7 <%
1 even
L; — % hen i i L; and U
;g = >3 r; when 2 is even. L; an ; are

1< <i%i
J even

combined in the lower (upper) PE when ¢ is odd (even).
This involves a subtraction and this subtraction is per-
S @i, 5 -1

formed in the same cycle as the multiplication of ——a--

1

and T; _q- Hence, the cycle time is
max { tDIV! max { tMUL 5 tSUB } + tSUB } (assgmlng the
add time to be roughly equal to the subtract time). T}}e
working of the systolic system is described formally in
o} .
{ " As drawn, the design of Figure 7 has a bandwidth of
2n . This is easily reduced to n by delaying the inputs of
both the upper row of a;s and the row following the
lower row of ‘a; s by one time unit. This is equivalent to
inserting one row of dashes (”-”) before row 2 of the
upper input and after row 2 of the lower input. The per-
formance figures for this design are P = 2n - 2,
B=n,T¢c=n+1T) =n +4, Ry ~4,Rp ~2
and R ~ 8. :

2.7. O(1) Bandwidth Designs

Horowitz {2} presents an n PE chain with O(1)
bandwidth for the back substitution problem. While his
original design employs 2n PEs, n of these are used
solely for input and may be eliminated. Figure 8(a)
shows the input pattern for the case n = 4 while Figure

VLSI Architectures for Back Substitution 377

Ggr 897

885 Go5

Go5 875 Gg3 Bo3

Bes 673 Ggy 8o

G4 Gps Ge1 an - i

Gy 51 = & -

621 631 i = = = —
-] O3y Gy G55 Ges Ggs G99

by = by = b

a7
U 5U NPT U

1L 3L 5L 7L 9L
2U U 14 8U 2
gl 4L 6L 8L
by by - by - [2% - b
en 633 By Ges Ges 87 Ggs Gog
3o Gy . . - b =
G52 Ge2 - oo -
G54 Goy 873 Gg L3
674 Ggy S92
876 Ggs Goy
G96
. agg
Figure 7

8(b) shows the general input pattern. PE(:) computes 2;
as well as all terms that involve z;. Hence PE(7) com-
putes [b] o 2 ajk Ty]—j Gﬁ Z; for] > 7. The term
<i .
[b; - kz g T] is transmitted to PE({) from
<1
PE(z — 1) and PE(7) in turn transmits
[b; ~ kz] gk T l-aj; 2 to PE({ +1). The formal

algorithn'f ‘is given in Algorithm 5. The performance
figures for the design of {2} are P =n, B =1,
T =2n -1, Tp =n(n +38)-1, Ry ~4, Rp ~2
and R ~ 8.

- — — —ay— — —ag— — aﬂuwhn“aubsamaﬂbzaﬂblan—>D-> e —»D—»z
(=)

. beae1852843 8505104005304 ag05 05058008589 blau—-D—b s % —-D—» z

(b)
Figure 8

for i —1to 2n —1do
fork—1to [1/2] do
do in parallel

Aj—ay; k, [i/21-k +1 {input}
aj At S <k
end
end
do in parallel
ifi < n then ¢, « b;, input}
Cj4—Cj_1, 2S]S i/2.]
end
do in parallel
if £ odd then [z[; 57 c[;/21/ AJ1/2]
cj +—cj-A; %z, g fz/z]]
* .

else (¢; «—¢; —A; * z;,
T << T
end
end

output ¥,,...,2,

Algorithm 5

Improved performance can be obtained using a
somewhat simpler algorithm, Algorithm 6, and the data
pattern of Figure 9. This time the chain is a bidirec-
tional chain. The number of PEs used is n — 1. The
performance figures for this design are P =n -1,
B =1, TC =2n -1, TD =n(n +5)/2, RCN‘I,
Rp ~1and B ~ 4.

cy+—b, {input}
A+ aq {input}
Ty ¢y /A,

output ¥,

for i —2ton do
do in parallel
¢y + by _; 4o {input}
cj—c¢ 2<j5j<n
end
end
for i—1ton - 1do
for k—1ton — 17 do
do in parallel
Ay, _k y1,i, {input}
A]] A] ELF
Ty &= ZJ —1»
end
end

i-v

J

g el R :
2 — C] AJ x,,
1970 Ly 41
Tye—cy /Ay
do in parallel
Cj ¢+
output I 4
end
end

Algorithm 6

ve. — 83383 ... Ggg— Ggfg ... Gaby ...

Figure 9

Further improvement may be obtained by simulat-
ing the rn /21 PE version of the bidirectional chain
algorithm of Section 2.4. The simulation involves sending
all the input needed for the next computation rightwards
from PE(1) and then performing the computation in all
PEs simultaneously. P, Ty and Ry are unchanged.
However, now, B =1, Tp = n(n +5)/2, Rp = 1 and
R ~ 2.

An O(1) bandwidth bidirectional -chain with
improved throughput can also be obtained by simulating
the improved throughput design of Section 2.4. The
input for each computation step is provided through the
middle PE. When this is done, we get P = n, B =1,
Te =n +2 Tp =n(n +5)/2 Rs~2 Rp—1
and B ~ 2.

2.8. Suinmary

Our designs are the first VLSI systems that require less
than o(2n) computational steps. This has been accom-
plished without sacrificing on B . In fact, the B value of
our O(1) bandwidth design for the case of To = o(n) is
half that of the best designs with To = o(2n).

Finally, we note that the comparisons among the
different designs are not entirely fair as some designs
require each PE to have a multiplier, a divider, and a
subtracter; while other designs require two kinds of PEs:
one with a multiplier and a subtracter and the other with
just a divider.

3. REFERENCES

{1} K.H. Cheng and S. Sahni, VLSI Systems For Matriz
Multiplication, Foundations of software technology
and theoretical computer science, Lecture Notes in
Computer Science, Vol 206, Springer Verlag, 1985.

{2} E. Horowitz, VLSI architectures for matriz computa-
tions, IEEE. International Conference On Parallel
Processing, 1979, pp. 124-127.

378 K. H. Cheng and S. Sahni

{3} K.H. Huang and J.A. Abraham, Efficient parallel
algorithms for processor arrays, IEEE International
Conference On Parallel Processing, 1982, pp. 271-
279.

{4} H.T. Kung and C.E. Leiserson, Systolic arrays for
VLSI, Department of Computer Science, Carnegie-
Mellon University, April 1978.

{5} H.T. Kung, Let’s design algorithms for VLSI sys-
tems, Proceedings CALTECH Conference on VLSI,
Jan. 1979, pp. 65-90.

{6} H.T. Kung, A Listing of Systolic Papers, Depart-
ment of Computer Science, Carnegie-Mellon Univer-
sity, May 1984.

{7} H.T. Kung and M. Lam, Wafer scale integration and
two level pipelined wmplementations of systolic
arrays, Journal of Parallel and Distributed Process-
ing, Vol. 1, #1, 1984

{8} C.E. Leiserson, Area-Efficient VLSI Computation,
MIT Press, 1983.

{9} K.H. Cheng and S. Sahni, VLSI archtectures for

back substitution, University of Minnesota, Technical
Report 84-30, 1984.

