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Abstract. We develop an efficient bidirectional chain VLSI system for the adaptive recursive filtering problem.

Our design is an improvement over previous designs. It matches the performance of a broadcast chain but does
not use the broadcast capability.
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1. Introduction

VLSI architectures for a variety of problems have been proposed by several authors. A
bibliography of over 150 research papers dealing with this subject appears in [6]. In this paper,
we are concerned solely with the adaptive recursive filtering problem. The input to this problem

is an n X w matrix 4 of weighting coefficients and a 1 X w vector (x;_,,..., X,). The output
is a1 X n vector (x;,..., x,) where
w
x; = Zaijxi+j—w—l’ i=1,2,..., n. (1)
j=1

In evaluating a VLSI design, we assume that the VLSI system will be attached to the host
processor using a bus as in Fig. 1. The evaluation of a VLSI design should take the following
into account:

(1) Processors: how many processors are used in the VLSI system? This figure is denoted by
P.

(2) Bus bandwidth: the maximum amount of data to be transmitted between the host and the
VLSI system in any cycle. This figure is denoted by B.

(3) Speed: how much time does the VLSI system need to complete its task? This time may
be decomposed into the times 7. (time for computations) and Ty, (time for data transmissions
both within the VLSI system and between the host and the VLSI system).

Let C denote the time spent for computation by a single processor algorithm and D denote
the total amount of data that needs to be transmitted between the host and VLSI system. As an
example, consider the problem of multiplying two n X n matrices 4 and B to get Y. Each
element of Y is the sum of n products. We shall count one multiplication and addition as one
arithmetic (or computation) step. If the classical matrix multiplication algorithm is used,
C=n’.If P=n, then T. > n?. The host needs to send 22 elements to the VLSI system and
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receive n? elements back. So, D = 3n%. With a bandwidth of n, T, must be at least 3n. Ty will
exceed 3n if the bandwidth is not used to capacity at all times. For the adaptive recursive
filtering problem, C=nw and D =nw+n+w. If n processors are used, then 7. >w and
Tp>w+1.

The ratio

R,=B+Ty/D

measures the effectiveness with which the bandwidth B has been used. Clearly, R, =1 for
every VLSI design.
The ratio

Ro=P*T./C

measures the effectiveness of processor utilization. Once again, we see that R-> 1 for every
VLSI design.

Finally, we may combine the two efficiency ratios R and R into the single ratio
R =R * Rp. A design that makes effective use of the available bandwidth and processors will
have R close to 1.

The efficiency measure R as defined here is the same as that used in [1-3] to evaluate VLSI
designs for matrix multiplication and back substitution. This measure is also quite similar to
that proposed in [4]. In fact, the two measures become identical when T = TF,.

In comparing different architectures for the same problem, one must be wary about over
emphasizing the importance of R-, R and R. Clearly, by using P=1 and B=1, we get
R.=Rp=R=1 but no speed up at all. So, we are really interested in minimizing 7. and T,
while keeping R close to 1.

VLSI architectures for the adaptive recursive filtering problem have been proposed earlier in
[4,5,7-9]. The design of [4] uses a broadcast chain and has P=w, B=w+2, To=n+w—1,
Tpr=n+w, Re~1+w/n~1, Rpb~1+1/w+w/n~1and R~ 1. The design of [5] uses a
bidirectional chain of processors. An improved version is described in [8]. For this, P =[w/2],
B=[w/21+2, Tc=2n+w—2, T,=2(n+w—1), Rc~1+w/2n)~1 Ry~1+3/w+
w/n~1 and R~ 1. The design of [7] uses a systolic ring architecture to solve the simple
recurrence problem. It can be easily extended to solve the adaptive recursive filtering problem.
This extension has P=[w/2], B=[w/2]|+ 1, Tc=2(n—1)+w, Tp,=2(n+w—1)+ 1, R~
1+w/2n)~1, Rp~1+1/w+w/n~1and R~ 1.

While all the above designs have an R ~ 1, the broadcast chain of [4] has a T and T, that
is about half that of the other designs. In this paper, we develop a bidirectional chain VLSI
system that has the same (actually slightly smaller) T, and 7 as the broadcast chain of [4].
For our design, P=w, B=w+1, To=n+[w/2], Tp=n+w+1, Rc~1+w/(2n)~1,
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Rp~1+w/n~1 and R~ 1. Our design shows that a broadcast chain is not required to
obtain this 7. and T, performance.

2. o(n) throughout bidirectional chain

An o(n) throughout bidirectional chain for the adaptive recursive filtering problem can be
obtained by extending the systolic design of [9] for the nonadaptive recursive filtering problem.
This extension requires us to recast (1) into the following form:

xi= Zalj 1+/ w—1

w

1/ 1+/ w— l+a Z ai—l,jxi+j—w—2

Il
M|

j= =
w—1 w—1
= ;X ;—wata,, Z a1, j+1%i4j—w—1
Jj=1 Jj=0
w—1
= Z ij l+] w—12 121 (2)
where
bO a;,a;_ 1,1 bj—a +a1wa1 1, j+1> 1<_]<W_1, (3)
an=1, anZO’ 2<j<sw, X _w= Xo- (4)

To calculate the b,,’s of (3) dynamically, w PEs in addition to the w + 1 PEs used in [9] are
needed. The performance figures of the resulting VLSI system are P=2w+1, B=2w+ 3,
Te~n+[w/2, Tp~n+w, Re~2+1/w+w/n~2, Rpb~2+1/w+w/n~2and R~ 4.

Improved performance can be obtained by using the bidirectional chain architecture of Fig.
2. Each PE has the ability to add, multiply, and transfer data to/from its left and right adjacent
processor. All the even numbered PEs are on the left, while all the odd numbered PEs are on
the right. The output is generated from the middle PE, PE(w). The PEs to the left of PE(w)
compute all terms involving even columns of A4, while PEs on the right compute all terms
involving odd columns of A. The case when w is odd is shown in Fig. 2(a). The case when w is
even is shown in Fig. 2(b).

The middle processor, PE(w), has the five registers: 4, V, X, Y and Z. The remaining PEs
have three registers (4, X and Y) each. We use the notation R(i) to denote register R,
Re{A,V, X, Y, Z}, of PE(i). The A register of each PE is used to hold an input value from
the 4 matrix. PE(i) receives input from column i of 4 only, 1 < w. The X register of each
PE holds an x; value while the Y registers hold partial sums in the computation of an x,. In
each cycle, the X(i)’s move one step away from the center PE, PE(w), while the Y(i)’s move
one step towards this PE.

The working of the VLSI system is described formally in Algorithm 2.1. The first for loop
sets up the initial configuration. The three steps in the parallel do are executed simultaneously.
When this for loop terminates, PE(w) contains x, for p=[(w—1)/2] —w=[—(w+1)/2] in
its X register. The X register of a PE that is a units away from PE(w) contains x,_,. The
second for loop contains two sets of concurrently executed statements. In the first set, i.e. first
parallel do, essentially five concurrent activities are performed in each iteration of this loop:

(1) PE(w) either inputs an x;, i <0 or outputs a newly computed x,, i > 0.

(2) All X values move one PE away from the middle PE.
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Fig. 2.(a) w is odd; (b) w is even.

(3) Each PE inputs an A value. Note that we assume a,; =0 for i <0.

(4) All Y values move one PE towards the middle PE. However, the Y value from PE(w — 1)
is moved to the Z register of PE(w) rather than to its Y register (this latter register receives the
Y value form PE(w — 2)). The boundary PEs (1 and 2) reset their Y registers to zero.

(5) From the data patterns of Fig. 2(a) and (b), we observe that if the Y value in PE(w — 1)
is a partial sum for x,, then that in PE(w — 2) is a partial sum for x,, ;. Hence, Y(w) and Z(w)
contain incompatible partial sums. The partial sum in Y(w) is to be used in the next iteration.
V(w) is used to save the previous value of Y(w). Consequently, V(w) and Z(w) contain partial
sums for the same x,.

In the second parallel do set of statements, either a new term is added to a partial sum Y(7)
or a new x; computed. PE(w) computes a new x; by computing (V(w)+ Z(w)) and
A(w)* X(w) in parallel. The two results are then added (the operations may also be pipelined).
Assuming that the time for an addition is no more than that for a multiply, the computation
performed in PE(w) takes the same time as that performed in the other PEs.
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for j—1to [(w -1)/2 Jdo
do in parallel
X(w) e z;_y
X(w-1)« X(w)
X(E)+~X(E +2) 1<i<w-2
end
end
forj—[(w +1)/2 Jton +w do
do in parallel '
case
i<w +1:X(w)<—z_,,-_w
J=w+1:X(w)+— 2z
J > w 4+ 1:output X(w) {outputz; _, 1}
endcase
X(w -1)«— X(w)
X(E)— X +2) 1<i<w-2
Aw)—a; v, v
A() = aj 4 |w-i)y2 J+1-w,; 151 S w -1
Y(1)~Y(2)—0
Y([i)«—Y( -2) 3<i <w
V(w) «~ Y(w)
Z(w)+— Y(w -1)
end
do in parallel
Y(E)«Y(E)+A@E)* X(i) 1<i<w-1
X(w)=(V(w)+Z(w))+A(w) * X(w) Jj 2w+l
end
end
output X (w) { output =z, }
Algorithm 2.1.
Table 1
w=5
i PE
2 4 5 1
X Y X Y X Y 14 Zz X Y X Y
1 - - - - X_g4 - - - - - - -
2 - - X_4 -~ X_3 = = = X_g4 = = =
3 X_4 - X_3 - X_3 - - - X-3 - X_4 [1.1]
4 Xt [1,2] X_o - X_4 - - - X_o [1,3] X_; [2,1]
5 X_, [22] . x_; 1,4] Xq [1,3] - - X_4 [2,3] X_o [3,1]
6 xX_, [3,2] Xo [2,4] X, [2,3] [1,3] [1,4] Xg [3,3] X_q [4,1]
7 Xq [4,2] X, [3,4] Xy [3,3] [2,3] [2,4] X, [4,3] X0 [5,1]
8 Xxq [5,2] Xq [4,4] X3 [4,4] [3,3] [3,4] X5 [5,3] X, [6,1]
9 X5 [6,2] X3 [5,4] X4 [5,3] [4,3] [4,4] X3 [6,3] Xq [7,1]
10 X3 [7,2] X4 [6,4] X5 [6,3] [5,3] [5,4] X4 [7,3] X3 [8,1]
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Table 2
C=nw, D=nw+n+w
Performance Architecture
Bidirectional Systolic
: - ring
Broadcast chain Chain (7
(4] S 9] Our
P w ' [w,/2] 2w w [w /2]
B w+2 [w/2]+2 2w w+1l [w/2]+1
Te n+w 2n+w n+[w/2] n+[w/2] 2n—1+w
Tp n+w 2(n+w-1) n+w n+w 2(n+w=—1)
R, 1 1 2 1 1
Ry, 1 1 2 1 1
R 1 1 4 1 1

Table 1 is a timing diagram for the case w =35 where j refers to the for loop index of
Algorithm 2.1. For each PE, the contents of its X and Y registers following the execution of the
for loop for that j value are shown. The notation [i, p] denotes X2_, ; ,;; a,;;x;,;_,,_1 for PEs
on the right of PE(w) and X%_, ,.,., a;;X,4;_,,_1 for PEs on the left. (w) contains the sum of
odd terms (as w is odd), while Z(w) contains the sum of even terms (as w is odd).

The performance figures of thisdesignare P=w, B=w+ 1, T =n-+[w/2], Tp=n+w+1,
Ro~14+w/(2n)~1, Rpb~14+w/n~1and R~ 1.

3. Conclusions

We have developed a VLSI system for the adaptive recursive filtering problem that has 7
and Tp that is o(n) and also has R ~ 1. Previously, this had been done only for the case of
VLSI systems using the broadcast capability. Our design does not employ this capability. The
performance characteristics for various VLSI systems for the adaptive recursive filtering
problem are summarized in Table 2. In going through this table, one should keep in mind that
the different systolic solutions require PEs of different complexity.

Further improvement in throughput (at the expense of design complexity) is possible.
However, this cannot be obtained using recurrence (1) as in order to compute x;, we need to
know x,_,. Hence x, can be computed, at best, one cycle after x;,_,; has been computed.
However, we can bring both 7. and 7, down to o(n/2) by computing two x,’s each cycle
using recurrence (2) and formulae (3) and (4). The idea is the same as used in the back
substitution problem in [2]. The VLSI system that incorporates this uses more hardware and is
quite a bit more complex. The method may be extended to get a 7. and T, of o(n/k) for any
fixed k.
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