Parallel Computing 12 (1989) 53—-69 .53
North-Holland

VLSI architectures for back
substitution *

Kam Hoi CHENG ** and Sartaj SAHNI
Computer Science Deﬁartment, 4-192 EE&CS Building, University of Minnesota, Minneapolis, MN 55455, U.S.A.

Received August 1987
Revised January 1989

Abstract. VLSI architectures involving unidirectional, bidirectional and broadcast chains as well as unidirec-
tional rings are examined for the back substitution problem. We review some of the earlier designs and also
develop new designs with superior performance.

Keywords. VLSI architectures, systolic systems, back substitution.

1. Introduction

VLSI architectures for a variety of problems have been proposed by several authors. A
bibliography of over 150 research papers dealing with this subject appears in [5]. In this paper,
we are concerned solely with the back substitution problem. The inputs to this problem are a
non-singular lower triangular matrix 4 and a column vector b. The objective is to determine
the unique column vector x with the property Ax = b. Throughout this paper, we assume that
A is nXn. So, x and b are nx1. The classical approach to obtain x is to use back
substitution. * x is obtained using the formula

g=1
= (bi— Y a,.jxj)/aii, 1<i<gn.
Jj=1

The x,’s are computed in the order x,, X,,..., x,,. The matrix 4 is assumed to be dense below
the diagonal. As a result, we do not develop any special methods to handle sparsity or
bandedness. Furthermore, it should be noted that the factorization process generally used to
obtain A may ensure that A is unit lower triangular, i.e., all diagonal elements are 1. In this
case, the divisions by q;;, above, may be eliminated.

VLSI architectures for the back substitution problem have been proposed earlier in [2,4,6—8].
The design of [2] employs a unidirectional chain of processors as in Fig. 1(a). The data flow is
left to right. The design of Kung and Leiserson [4,7,8] employs a bidirectional chain as in Fig.
1(b). Here, data is permitted to flow both from left to right and from right to left. In [6], a ring
architecture such as in Fig. 1(c) is proposed for this problem. Data can flow in only a single
direction (either clockwise or counterclockwise) around the ring.

* This research was supported in part by the National Science Foundation under grant MCS-83-05567 and
MIP-86-17374.
** Current address: Computer Science Department, University of Houston, Houston, TX, U.S.A.
1 Strictly speaking, we are really doing forward substitution and not back substitution. In back substitution, 4 is upper
triangular. However, forward and back substitution are quite similar and we prefer to use the generic term “back
substitution” here.

0167-8191 /89 /$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

54 K.H. Cheng, S. Sahni / VLSI architecture for back substitution

(a) Chain

O - =]

(b) Bidirectional Chain

e S———

(c)Ring
broadcast line
I — — — —
L] L] L]
(d) Broadcast Chain

Fig. 1.

We examine each of the above three architectures here. In addition, we consider the
broadcast chain used in [3] and [1] (among others) for the matrix multiplication problem. To
our knowledge, there has been no earlier research on the use of broadcast chains for back
substitution. An example of a broadcast chain is given in Fig. 1(d). A broadcast line has the
property that data put on this line becomes available at all PEs on the line in O(1) time.

In evaluating our designs, we assume that the VLSI system will be attached to the host
processor using a bus. The evaluation of a VLSI design should take the following into account:

(1) Bus bandwidth: how much data is to be transmitted between the host and the VLSI
system in any cycle? This figure is denoted by B.

(2) Speed: how much time does the VLSI system need to complete its task? This time may
be decomposed into the times T (time for computations) and Tp, (time for data transmissions
both within the VLSI system and between the host and the VLSI system).

One may expect that by using a very high bandwidth B and a large number of processors P,
we can make T and T, quite small. So, T and Ty, are not in themselves a very good measure
of the effectiveness with which the resources B and P have been used. Let D denote the total
amount of data that needs to be transmitted between the host and VLSI system. The ratio

Rp=B*Ty,/D

measures the effectiveness with which the bandwidth B has been used. Clearly, R > 1 for
every VLSI design. As an example, consider the multiplication of two n X n matrices. The host
needs to send 2n? elements to the VLSI system and receive n? elements back. So, D = 3n?.
With a bandwidth of n, T, must be at least 3n. T, will exceed 3 if the bandwidth is not used
to capacity at all times.

Let C denote the time spent for computation by a single processor algorithm. The ratio

measures the effectiveness of processor utilization. Once again, we see that R. > 1 for every
VLSI design. Consider the problem of multiplying two n X n matrices 4 and B to get X. Each

element of X is the sum of » products. We shall count one multiplication and addition as one
arithmetic (or computation) step. Hence, C =n?. If P = n, then Ty > n’.

K.H. Cheng, S. Sahni / VLSI architecture for back substitution 55

In evaluating a VLSI design, we shall be concerned with T;- and T, and also with R and
Rp. We would like R and R, to be close to 1. Finally, we may combine the two efficiency
ratios R and Ry, into the single ratio R = R * R. A design that makes effective use of the
available bandwidth and processors will have R close to 1.

The efficiency measure R as defined here is the same as that used in [1] to evaluate VLSI
designs for matrix multiplication. This measure is also quite similar to that proposed in [2]. In
fact, the two measures become identical when T = T

For each of the designs considered in this paper, we compute R, R, and R. In several
cases, our designs have improved efficiency ratios than all earlier designs using the same model.
In comparing different architectures for the same problem, one must be wary about over
emphasizing the importance of R, Rp and R. Clearly, using P=1 and B=1, we can get
R-.=Rp=R=1 and no speed up at all. So, we are really interested in minimizing T and T
while keeping R close to 1. Some of our designs reduce T at the expense of R.

2. Back substitution

2.1. The problem

Input: A lower triangular matrix 4 and an n X 1 vector b.
Output: An n X 1 vector x such that Ax =b.
Parameters: C=in(n+1)~ in?, D= in(n+5)~ in’

2.2. Chain with O(n) bandwidth

An n-PE chain may be used as in Fig. 2 (dashes indicate no input). Each PE has one adder,
multiplier and divider. PE(j) computes x;. Row j of 4 (excluding the elements beyond the
main diagonal) is input to PE() element by element beginning at time j. PE() inputs b; at
time j. The computed x-values flow to the right and get output from the right end of the chain.
A formal description of the algorithm executed by each PE is given in Algorithm 1. In this

b,
by
b b3 =
. 23 = s
b ‘Ll - s
1 2 3 4 n x
an - v =
a21 - - -
a2 asy =
a3 a4
a33 ags
243
a -
Qan1
Qnn

Fig. 2.

56 K. H. Cheng, S. Sahni / VLSI architecture for back substitution

fori<—1to2n-1do
do in parallel {Input/Output}
ifi <nthenc; « b;
else output x,
Aj <aqji-j+1s (l + 1)/2.<_j Smin{i, nj}
Xj € Xj_1, 2<j<n
~end
do in parallel
if i odd then [x[,-,z] —crin!Arin
3 Cj(—Cj—Aj*Xj, Jj# rl/2.|]
else [cijecj—Aj*x;, 1<j<n]
end ;
end
output x,,
Algorithm 1.

algorithm, the notation Y;, Y € {¢, x, A} means register Y of PE(i). The correctness of this
algorithm is readily established.

From Fig. 2 and Algorithm 1, we see that maximum input/output occurs when [=n. At
this time, a bandwidth of [3n] + 1 is needed.

Performance
The performance figures for this scheme are P=n, B=[3n]+1, Tc=2n—1, Tp=2n
Rs~4, Rp~2and R~ 8.

>

fori<—1to2n-1do
do in parallel {Input/Output}
if i <n then Ci-1)modni2+1 € b;

Aj¢aji-ji1, @G +1)/2<j<min{i, n/2}
A,-(—a,-,,,.,z,,-_,-_,,/g,,l, G+ 1/2<j+n/2<min{i, n}
case

1<ign/2 :xjexj-1, 2<j<nl2
ni2<isn :xjexj_1, 2<j<ni2

X1 € X2
i>n 1Xjex_y, 25j<ni2
output x,
endcase
end

do in parallel
ifiodd then [k « ([i/2] -1)modni2 +1
xk(—ck/A,,
cj<—cj—-A,-*x,~, j#k]
else [cj(—cj—Aj*xj, ISJSH/Z]
end
end
output x,

Algorithm 2.

K. H. Cheng, S. Sahni / VLSI architecture for back substitution 57

2.3. Ring with O(n) bandwidth

An examination of Algorithm 1 reveals that at most [37n] PEs do useful work at any time.
Hence, we may double up the use of the first [37] PEs by requiring PE(i) to compute both x,

b
bn/2+‘ 3

bnl2+2 i

bai241 - . -
- ban

- bs

= b, -
b, - - -

\ 1 2 3 [n/2] ¥

an - - -
- as - -—
ax 431 -

- a3

Q33

= - /2,1
Qn/24+1,1 -
Gn/242,1 -
Gn/24+3,1
an/?..nIZ
Ani2+1,m/2+1 . . Qa1
Qni24+2,0/2+2
Qni24+3,n/2+3

Qnn

Fig. 3.

58 K.H. Cheng, S. Sahni / VLSI architecture for back substitution

and X, ., »)- In case n is odd, PE(|37]) computes only Xin s21- For simplicity in exposition, we
assume that » is even (in case n is odd, an extra column and row may be added to 4 and an
extra value added to b).

The input data pattern is shown in Fig. 3 and the algorithm executed by each PE is given in
Algorithm 2 Once again, correctness is easily established.

Performance ;
The performance figures are P =[3n], B=[3n]+1, To=2n—1, Ty =2n, Rc~2, Rp~?2
and R ~ 4. So even though only half as many PEs are used, 7. and T, are unchanged!

2.4. Bidirectional chain with O(n) bandwidth

Kung [7] has proposed the n-PE bidirectional chain of Fig. 4. PE(1) computes the x-values.
On the first cycle, it does this by inputting b, and a,; and computing x, = b, /a,,. Every odd
cycle thereafter, a c-value is received from PE(2) and an a-value input. A new x is computed by
dividing these two values. Computed x-values are output from PE(1) and also transmitted
rightwards.

On cycle, i, PE(i) inputs b, and a,;, i>1; x; is received from the left. The result
¢=b;—a;,x, is transmitted leftwards. By the time this reaches PE(1), b, — X'_}a, ;x; has been
computed.

by
bs
bs -
by G = -
by - o - -
* 1 2 3 4 = -
ai . = - -
- an — = —
asn = as; -
- a3y - a4y
as3 -)
- a43 -
Q44 . . . Qny
- Qp,n-3
- an,n—2
- an,n—l
Qnn

Fig. 4.

K.H. Cheng, S. Sahni / VLSI architecture for back substitution 59

Performance

As can be seen, odd PEs perform useful work in odd cycles and even PEs in even cycles. So,
adjacent pairs of PEs may be simulated by a single PE to get an equivalent [in] PE
architecture. When this is done, the performance figures become P =[in], B=[in]+2,
Te=2n-1,Tp =2n, Rc¢~2, Rp~2and R~ 4.

It is possible to improve the throughput of the bidirectional chain by providing each PE with
its own divider that can function in parallel with the rest of the PE. Our design requires n PEs
and is as shown in Fig. 5. The output is generated from the middle PE. The PEs to the left of
the middle PE compute all but the last term needed for the even x,’s. Similarly, the PEs on the
right compute all terms but the last needed for the odd x,’s.

The input data pattern is quite regular. Assume that the PEs are indexed as in Fig. 5 with the
middle PE given the index 1. The first input to PE(i) is b, and the second a,,. Let A(i, j)
denote the (j+ 2)th input to PE(i). Then, A(1, 1) =a,,, A(1,2) =as,, A1, 3)=a,,, AQ, 1)
=a,, A5, 1) =0, etc. Formally, we have

A, /) a1, i=1
L, J)= .
Qivarri-tian2ni+1-li2), E>1

where a;, =0 for k <1.

pe
PE 6 4 2 1 3 5 7
k — L - ¥ — L - E - * — * —
+ + + + + o &
be by b, b, bs bs b,
Q6o Q44 azn an as3 ass arn
- - aa a asy - =
e 61 Q42 a3 as; as1 -
as 7] Aaes a43 as3 ag an
agz ags Aes Qs4 a4 ans agy
10,3 Agq ass ass ass Q94 ag3
a10,4 a10,5 asge 276 Qg6 ags a4
a10,6 a10,7 asgy agy a11,6 a,s
ai10,8 agg ai11,8 ai11,7
a10,9 a11,9
ai, 10

60 K.H. Cheng, S. Sahni / VLSI architecture for back substitution
Each x; is computed using the formula
iyt B M

Each term of the form (a,;/a;;)x; is obtained by computing a,;/a;, in one cycle and then
multiplying by x; in the next cycle. It should be noted that computing the x,’s in this way
affects the numerical properties of back substitution. In the traditional method (cf. Section 1),
only one division per x; is performed. We do not investigate the effects of numerical errors on
the scheme suggested by (1). Further, as pointed out in the introduction, the a,;’s may all be 1
as a result of the factorization scheme used to generate 4. In this case the numerical properties
are not affected and the divisions by a,; may be eliminated from the following discussion.

The c registers hold the partial sums for (1); the Z registers hold terms of the form a, /i
the D registers hold the divisors a;; and the e registers hold a single term of the form
(—a;;/a,;)x;. The e registers are needed as, often, a PE computes two terms of an x;. The first
term is saved in the e register and then combined on the next cycle with the second term and
the contents of the ¢ register. The functioning of the systolic system is described formally in
Algorithm 3.

Performance
From Algorithm 3 and Fig. 5, we see that P=n, B=n+1, Tr=n+1, Tp=n+3, R ~ 2,
Rp~2and R~ 4.

zero all registers
C; ¢« bi, 1<i<n
D,’ <« a;, 1<i<n
¢; « ¢;/D;, 1<i<n
{LetU=(3,4,7,8,11,12,..},V={2,5,6,9,10,13, 14, ...} }
for j<1tondo

do in parallel {Input/Output}

Al (——aj”,,-
Ai<—ai+2[(,'+1—[i/2])/2],j+1-Li/zj, i>1
X9 &— X1, _122

X; €= X;~2, i23,j22

output x, j22
ifjoddthen[c; «c¢3, j23;D; < D,]
else [Cl «Cy; D,y (—D3]
Ci—o2 €& (i, i24, I_(l + 1)/2_' <j
Di-—2 (—Di, 124, I_(l—l)/z_l Sj
end
do in parallel
X16C1—-21*x;
iijdd then [C,'(—-(C,' +e,-)—Z,-*x,-, ieVand |_l/2J <j

e ——Z;*%x;, ieUand |_(l+1)/2J <j]
else [c;(ci+e)-Z;*x;, ieUand [i/2] <j
e ——2Z;*%x;, ieVand l_(i+1)/2J <j]
Z;« A;ID;, 1<i<n
end
end
output x;

Algorithm 3.

K.H. Cheng, S. Sahni / VLSI architecture for back substitution 61

The throughput cannot be further improved using formula (1), as to compute x;, we need to
know x,_;. Hence x; can be computed, at best, one cycle after x,_; has been computed. We
can bring 7. down to o(3n) by computing two x,’s each cycle using the formulae

b- i—2
B=— Z
j=1

aijx 4 5
J i—1
a;i

a;

b, : _ o
ZZI'_ Y - Ll Zl_l»ij
ii i i

j=1 % i | Gi-1-1 27 G-
P2
_ i 45 b~ Y R)
= i—1 X ()
a;; 4411 j=1\ Qi a;iGi_1,i-1
for i > 1 and odd, and
b i-3 a. - a. . da. :
f a,’,,‘f] ij Li—1%i=1,j
et T Ml (A Y
Qi Aidi1,i-1 =1\ Gii a;id;_1,i-1
[Gii-2 4i-19i-1,i-2
Xi—2
ai; A;ii—1,i-1
i—3
_b e Zbiey 4 Gii14i-1; Zidioay,
= - i—1 o X
Qi ;4,1 i—2,i-2 jo1\ % a;;4;_1,i-1 Ai-2,i-2

where

for i > 2 and even.

First, x, is computed as x; = b,/ay; and x, as x, =b,/a,, — ay b,/a;;. Once x; and x,
have been computed, x; and x, can be computed. To compute x;, x; is needed and to -
compute x4, x; is needed. So both x; and x, can be output one cycle after x; and x,. In the
meantime, x5 and x4, can start computation using x; and x,. In the next cycle, the
computation of x5 and x, can be completed using x; from the previous cycle. The VLSI
system that incorporates this uses more hardware than Fig. 5 and is quite a bit more complex.
We shall not present the details here. We note that the method may be extended to get a T of
o(n/k) for any fixed k.

2.5. Broadcast chain with O(n) bandwidth

The architecture and data pattern are shown in Fig. 6. The algorithm used is given in
Algorithm 4.

Performance

The performance figures for the broadcast chain are P=n, B=n, Tor=n, Tp=n+2,
Rc~2, Rpb~2and R~ 4.

One should note that each computation of Fig. 6 takes fgyp + fyur + tprv time, while in all
of our previous designs, a computation required only max{ fpy, f\up + fsup } Where fpy is the
time to divide, #y,; is the time to multiply, and ¢4y is the time to subtract. The performance
of the broadcast chain may be improved slightly by overlapping divisions with other oper-

K. H. Cheng, S. Sahni / VLSI architecture for back substitution

biay —= 1

aybray —= 2

G343 bzazyy; —= 3

043842841 bsasy —= 4

Gp, n-1 DI Qp38p20pn1 bn Gpp ———> n

Fig. 6.

Dj €« aj; {input}
cj«b; {input}
X1 € Cy /Dl
fori—1ton-1do
do in parallel
broadcast x; to x;, j>i
output x;
Aj(—-aj,-, Jj>i {lnput}
end
do in parallel
Xj(—(Cj—Aj*Xj)/D', j=i+1 {compute x,~+1}
Cj(—Cj—Aj*Xj, j>i+1
end
end
output x,,
Algorithm 4.

K.H. Cheng, S. Sahni / VLSI architecture for back substitution 63

ations. The new design is as in Fig. 7. Equation (1) is used to compute the x,’s. The dividers are
loaded with a;,. Each input to PE(7) is divided by q;; at the divider and then transmitted to the
remainder of the PE. The divisions take place in parallel with a multiply and subtract operation
in the same PE. As a result of this, each computation step takes max{¢py, fsug + fmur } When
Fig. 7 is used rather than ¢y + f5yp + tpurL. The performance figures using Fig. 7 are P = n,
B=n,Tcr=n+1, Tp=n+3, Rc~2, Rpb~2and R~ 4.

The R value of both preceding designs may be reduced to ~ % by using half as many PEs.
For example, the design of Fig. 6 translates into that of Fig. 8. The 3n-PE broadcast chain is
first used to compute x;, x,,..., X, , in exactly the same way as Fig. 6 is used when A is an
$n X 3n matrix. Next, the remaining 37 x’s are computed by having the 1n PEs behave like the
last 37 PEs of Fig. 6 with the required x;’s being re-input and broadcast. To compute the first 17
x’s, 3n compute steps and n + 2 data move steps are needed. For the remaining 1n x’s, an
additional n compute steps and »n + 2 data move steps are needed. Hence, P = in, B=in+1,

PE

biay, + * — 1

azbaazn + * — 2

asas bias; - * — 3

Q404041 b4as + * — 4

Gn n-1 v e o GuPnn1 byan, + * — n

Fig. 7.

64 K. H. Cheng, S. Sahni / VLSI architecture for back substitution

X
1 2 3 .. ni2
an az aszs Ani2, ni2
by by bj bas2
= ' a2 as1 Ani2,1
- - asy] Qni2,2
Qni2,ni2-1
Qni2+1,n/24+1 Ani2+2,n12+2 Ani2+3,n/2+3 Qnn
bni2 41 bui242 bni24+3 b,
Qni24+1,1 qni2+2,1 3ni2+3,1 Qn1
Qni2+2,2 Qni2+3,2 an2
Ani2+3,3 an3
An4
Qni2+1,n/2 . . Qans

Qni2+2,n/2+1
Qni2+3,n/2+2

An, n-2

An, n-1
Fig. 8.

T.=3n, Tp=3n+4, Rc~3, Rp~3 and R~ 7. This reduction in the R value has been
obtained at the expense of T and Tp, which are now both 50% larger than before.

This idea may be extended to the case of n/k PEs for k any constant. For example when
k=4, we get P=1n, B=in+1, To=3n, Tpb=3n+8, Rc~3, Rp~3 and R~%. A
further reduction in R has occurred at the expense of T and 7T,! Certainly, when k=n,
P =1 and the scheme becomes the normal one processor scheme with R =1.

2.6. o(n) throughput with unidirectional data flow

The unidirectional chain of Fig. 2 cannot be modified to produce the n x,’s in o(n) time.
This is because it takes o(n) time for x; to reach PE(n) and another o(n) time to compute x,
using one PE. While we have seen several architectures that provide for o(n) computation of
the x,’s, these either employed a broadcast capability or required data to flow in two directions.
Neither of these capabilities is necessary for this.

We may compute the x,’s in o(n) time using 2n — 2 PEs as in Fig. 9. One PE is assigned to
the computation of x; and another to that of x,. Each of the remaining x,’s is computed using
two PEs. The upper PE of each such pair computes the terms involving x; for i odd while the

K.H. Cheng, S. Sahni / VLSI architecture for back substitution 65
agy Aag7
ass a9s
aes ars asgs a93
ae3 ans asgy ag1
Q43 as3 as1 an - -
a4 asi - - - -
a2 asy - - - - - -
ax as3 Q44 ass Q66 ar asgs Qg9
b, - by - bg = bg -
33U 5U U IaU
1L - 2 3L a2 SL a2 L a2 oL
2U x U % 6U x 8U x S
4L 6L 8L >
b, bs - bs = b, - by
an Q33 (127 ass Aes ann asgs ag9
a3 as2 - - - - -
as2 a62 = - -
ass4 des an asz -
a4 37} agy
a6 asge Qg4
Q96
agg
Fig. 9.

lower PE computes the even terms. Predivision of the a,;’s by a;; as suggested by formula (1) is
done by each PE. The upper PE in the pair for x; computes U, = b,/a;; — X1 ¢ j <; j oaa(@;;/@;1)%;
when i is even and U, =2X;_;.;;oda(@;;/a;;)x; when i is odd. The lower PE computes
Li=b;/a;— Xy j<ijeven(@;;/a;;)X; when i isodd and L; =X, _;-; ;even(a;;/a;)x; when i is

66 K.H. Cheng, S. Sahni / VLSI architecture for back substitution

doin parallel 1<i<n
cueb;, ieven;, cy«b;, iodd
end
doinparallel 1<i<n
Dyéea;, i#1; Dyeay i#2
end
doin parallel 1<i<n
CiU(_CiU/Dilj, cg <0, ieven; ¢y < cu/Dy, ciy <0, iodd
le(—ZlL(—O '
end
for j «1tondo
doinparallel (I=j+k m=j-2 [(k-12]}
ifjoddthen[A,U(——a,,,,,, 1<k<j+1; A,+1L<—a,+1,m_1, 1<k<j-1
Xp X1, j#1,0Sk<1; Xy ¢ Xpn oy, 25k<j—2
XIU(_Xm—Z,U» ISij—l; YjL(_CjU» _]#1]
else [Ap—ajm, Al iveaiim-r1, 1Sk<)
Xlu("'xj'_l 5 OSkSL XIU(—Xm—Z,U’ 25](5]—1
XIL('—Xm—Z,L’ 1Sij—2; YjU("'CjL’ J¢2]
output x;_1, Jj#1
end
do in parallel
ifjoddthenxj(—(c,L—YjL)—Z,L *X]'L
else X; (_'(ch_YjU)"'ZjU *XjU
C,,,U(-—C,,,U—Zmu*xmu, cmL('—cmL+Zn|L*Xva 1<k< r]/2] -1, m=2 r(] +k)/2]
Cn) — Cny + Zoy * Xy, 15k < I_j/ZJ, m=2 rj/2+k1—1
Col ¢ Cil, = Zpt, ¥* X, , 15k < l__]/2J—1, m=2 r]/2+k]—1
ZIU(_AIU/DIU, 1<k<2 rj/Z], l=2|_]/2_]+k+1
end
end
output x,,
Algorithm 5.

even. L; and U, are combined in the lower (upper) PE when i is odd (even). This involves a
subtraction and this subtraction is performed in the same cycle as the multiplication of
a;;—1/a; and x,_;. Hence, the cycle time is max{tpy, max{¢yyy, fsyp} + fsup) (assuming
the add time to be roughly equal to the subtract time). The working of the systolic system is
described formally in Algorithm 5.

Performance

As drawn, the design of Fig. 9 has a bandwidth of 2n. This is easily reduced to n by delaying
the inputs of both the upper row of a,;’s and the row following the lower row on a;,’s by one
time unit. This is equivalent to inserting one row of dashes (“-”) before row 2 of the upper
input and after row 2 of the lower input. The performance figures for this design are
P=2n-2,B=n,T-=n+1, Tp=n+4, Ro~4, Rp~2and R~ 8.

2.7. O(1) bandwidth designs

Horowitz [2] presents an n-PE chain with O(1) bandwidth for the back substitution problem.
While his original design employs 2n PEs, n of these are used solely for input and may be

K.H. Cheng, S. Sahni / VLSI architecture for back substitution 67

e Rl T —a42a33b4a41a32b3a31a22b2a21b1au—’D—> —>D——>x
@)

oo beaeas@nnbsasiaamnbiananbiananbranbian—= |= ... = |=x

Fig. 10.

eliminated. Fig. 10(a) shows the input pattern for the case n =4 while Fig. 10(b) shows the
general input pattern. PE(i) computes x; as well as all terms that involve x;. Hence PE(i)
computes [b; — X, o;a,.x,] — a;;x; for j>i. The term [b; — X .;a;,.x,] is transmitted to PE(i)
from PE(i — 1) and PE(i) in turn transmits [b; — Y, . ;@ X,] — a;;x; to PE(i + 1). The formal
algorithm is given in Algorithm 6. The performance figures for the design of [2] are P =n,
B=1,T-=2n-1, Tp=n(n+3)—1, Rc~4, Rp~2and R~ 8.

Improved performance can be obtained using a somewhat simpler algorithm, Algorithm 7,
and the data pattern of Fig. 11. This time the chain is a bidirectional chain. The number of PEs
used is #n — 1. The performance figures for this design are P=n—1, B=1, To=2n—1, Tp
=1in(n+5), Re~4, Rp~1and R~ 4.

Further improvement may be obtained by simulating the [37] PE version of the bidirectional
chain algorithm of Section 2.4. The simulation involves sending all the input needed for the
next computation rightwards from PE(1) and then performing the computation in all PEs
simultaneously. P, T and R are unchanged. Howeyer, now, B=1, Tp=3n(n+5), Rp=1
and R ~ 2.

An O(1) bandwidth bidirectional chain with improved throughput can also be obtained by
simulating the improved throughput design of Section 2.4. The input for each computation step

for i <1to2n-1do
for k <1to [i/2] do
do in parallel
Ay < apip] 4k, [in]-k+1, (input}
Aj(_Aj—l» 2Sj$k
end
end
do in parallel
ifi <nthenc, « b;, {input}
Cj("'cj—lv ZS_jS rl/Z]
end
do in parallel
ifi odd then [x [ir2] € Clir) A [ir2]
cj(—-cj—Aj*xj, j-‘/—' I-l/2.|]
else [Cj(—Cj—Aj*Xj, 1<j< fl/2-l]
end
end
output xy,...,x,

Algorithm 6.

68 K.H. Cheng, S. Sahni / VLSI architecture for back substitution

c1 ¢ by {input}
A« a {lnput}
X1 c1/4,

output x;

for i <2 to ndo
do in parallel
€y ¢ bn_i,2, {input}
Ci<Cj_1, 2Sj<n
end
end
fori<—1ton-1do
fork<—1ton-ido
do in parallel
Al ankar,ir {input}

Aj("'Aj—lr 2Sj$n—i
Xj(—Xj..l, 2Sj$ﬂ-i
end
end

cjeci—Aj*x;, 2<j<n-i

Al a0, {input}

X1 (—01/A1

do in parallel
CiCjs1s lSan—i—l
output x;

end

end

Algorithm 7.

is provided through the middle PE. When this is done, we get P=n, B=1, To=n+2,
Tp=3n(n+5), Rce~2, Rp=1and R~2.

2.8. Summary

The performance figures of the various VLSI architectures for the back substitution problem
are summarized in Table 1. Our designs are the first VLSI systems that require less than o(2n)
computational steps. This has been accomplished without sacrificing on R. In fact, the R value
of our O(1) bandwidth design for the case.of T = o(n) is half that of the best designs with
Tc=o0(2n).

Finally, we note that the comparisons among the different designs are not entirely fair as
some designs require each PE to have a multiplier, a divider, and a subtracter; while other

— 333483 ... Q2 — Q22491 ... a,,1b2 b,, —a“b1<—->D<:; %

Fig. 11.

K.H. Cheng, S. Sahni / VLSI architecture for back substitution 69

Table 1

Performance Architecture
Chain Ring Bidirectional chain Broadcast chain
with O(n) with O(n) with O(n) with O(n)
bandwidth bandwidth bandwidth bandwidth
[7] Our n PEs n/2 PEs
P n " [n/2] [n/2] . n n n/2
B [n/2]1+1 [n/2]+1 [n/2]+2 n+1 noo n/2
Tc 2n—1 2n—1 2n—1 n+1 n+1 3n/2
Tp 2n 2n © 2nm n+3 n+3 3n/2
Rc 4 2 2 2 2 3,2
Rp 2 2 2 2 2 32
R 8 4 4 4 4 9/4
Performance Architecture
o(n) O(1) bandwidth designs
Th.ro'ugh Put Unidirectional Bidirectional chain
unidirectional ;
chain
data flow " Our Improved Improved
(2] performance throughput
P 2n—-2 n n—1 [n/2] n
B n 1 1 1 1
Tc n+1 2n—1 2n-1 2n-1 n+2
Tp n+4 n?+3n -1 n(n+5)/2 n(n+5)/2 n(n+5)/2
Rc 4 4 4 2 2
Rp 2 2 1 1 1
R 8 8 4 2 2

C=n(n+1)/2, D=n(n+5)/2.

designs require two kinds of PEs: one with a multiplier and a subtracter and the other with just
a divider.

References

[1] KH. Cheng and S. Sahni, VLSI architectures for matrix multiplication, in: Proc. Foundations of Software
Technology and Theoretical Computer Science, Lecture Notes in Computer Science 206 (Springer, Berlin, 1985).

[2] E. Horowitz, VLSI architectures for matrix computations, in: Proc. IEEE International Conference on Parallel
Processing (1979) 124-127.

[3] K.-H. Huang and J.A. Abraham, Efficient parallel algorithms for processor arrays, in: Proc. IEEE International
Conference on Parallel Processing (1982) 271-279.

[4] H.T. Kung, Let’s design algorithms for VLSI systems, in: Proc. CALTECH Conference on VLSI (1979) 65-90.

[5] H.T. Kung, A listing of systolic papers, Department of Computer Science, Carnegie-Mellon University, 1984.

[6] H.T. Kung and M. Lam, Wafer scale integration and two level pipelined implementations of systolic arrays, J.
Parallel Distrib. Process. 1 (1) (1984).

[7] H.T. Kung and C.E. Leiserson, Systolic arrays for VLSI, Department of Computer Science, Carnegie-Mellon
University, 1978.

[8] C.E. Leiserson, Area-Efficient VLSI Computation (MIT Press, Cambridge, MA, 1983).

