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VLSI Architectures for the Finite Impulse
Response Filter

KAM HOI CHENG AND SARTAJ SAHNI, MEMBER, IEEE

Abstract —We review the various VLSI architectures that have been
proposed for the finite impulse response filter problem. In addition, new
architectures are proposed and improved designs for some of the earlier
architectures are developed.

[. INTRODUCTION

LSI architectures for a variety of problems have been

proposed by several authors. A bibliography of over
150 research papers dealing with this subject appears in [1].
In this paper, we are concerned solely with the finite
impulse response (FIR) filter problem. The input to this
problem is a 1 X w vector A= (a;,a,,---,a,) and a 1X
(n+w) vector X = (x4, x;,"",X,,,_1)- The output is a
1X(n+1) vector Y= (yy, yy,-* -, »,) where
(1)

The FIR problem is of interest to VLSI designers as (1)
is difficult to solve in real time for wide-band signal
processing applications. Furthermore, the FIR problem has
relatively favorable sensitivity properties with respect to
round-off errors. Consequently, most application needs can
be satisfied using fixed-point arithmetic of moderate preci-
sion. Additionally, the problem may be solved by al-
gorithms requiring a simple control and flow of data. This
facilitates highly parallel and pipelined computation.

VLSI architectures for this problem have been proposed
earlier in [2]-[6]. The design of [3] and [4] uses a unidirec-
tional chain of processors as in Fig. 1(a). Here data flow is
from left to right. The design of [2], [5], and [6] employs a
bidirectiona! chain of processors as in Fig. 1(b). In this,
data flows both from left to right and from right to left.

In this paper, we examine each of the above two archi-
tectures. In addition, we consider broadcast chains [Fig.
1(c)] as used in [7]-[11] (among others) for the matrix
multiplication, back substitution, LU decomposition, and
the adaptive recursive filtering problems. A broadcast line
has the property that data put on this line and becomes

"
Y= Zajx,,wﬂ, i=0,1,---,n.

j=1
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available at all PE’s on the line in O(1) time. Furthermore,
the systolic ring architecture [Fig. 1(d)] used in [3] for the
LU decomposition problem is also examined.

In evaluating our designs, we assume that the VLSI
system will be attached to the host processor using a bus as
in Fig. 2. The evaluation of a VLSI design should take the
following into account.

1) Bus bandwidth—How much data is to be transmitted
between the host and the VLSI system in any cycle? This
figure is denoted by B.

2) Speed—How much time does the VLSI system need
to complete its task? This time may be decomposed into
the times 7 (time for computations) and T, (time for data
transmissions both within the VLSI system and between
the host and the VLSI system).

One may expect that by using a very high bandwidth B
and a large number of processors P, we can make T, and
T, quite small. So, T and T}, are not in themselves a very
good measure of the effectiveness with which the resources
B and P have been used. Let D denote the total amount of
data that needs to be transmitted between the host and
VLSI system. The ratio

R,=B+T,/D

measures the effectiveness with which the bandwidth B has
been used. Clearly, R, >1 for every VLSI design. As an
example, consider the multiplication of two n X n matrices.
The host needs to send 2n? elements to the VLSI system
and receive n? elements back. So, D = 3n2. With a band-
width of n, T, must be at least 3n. T}, will exceed 3n if the
bandwidth is not used to capacity at all times.

Let C denote the time spent for computation by a single
processor algorithm. The ratio

R.=PxT./C

measures the effectiveness of processor utilization. Once
again, we see that R >1 for every VLSI design. Consider
the problem of multiplying two n X n matrices 4 and B to
get X. Each element of X is the sum of n products. We
shall count one multiplication and addition as one arith-
metic (or computation) step. Hence, C = n>. If P =n, then
T,

In evaluating a VLSI design, we shall be concerned with
T and T, and also with R and R,. We would like R .
and R, to be close to 1. Finally, we may combine the two
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Fig. 1.

efficiency ratios R. and R, into the single ratio R =
R * R . A design that makes effective use of the available
bandwidth and processors will have R close to 1.

The efficiency measure R as defined here is the same as
that used in [8] and [9] to evaluate VLSI designs for matrix
multiplication and back substitution. This measure is also
quite similar to that proposed in [7]. In fact, the two
measures become identical when T. =T,

For each of the designs considered in this paper, we
compute R, R,, and R. In several cases, our designs
have lower efficiency ratios than all earlier designs using
the same model. In comparing different architectures for
the same problem, one must be wary about overem-
phasizing the importance of R, R p, and R. Clearly, using
P=1 and B=1, we can get R.=R,=R=1 and no
speedup at all. So, we are really interested in minimizing T,

93
TAPE PRINTER
HOST BUS
VLSI VLSI
SYSTEM 1 SYSTEM 2

Fig. 2. Connecting to a host computer.

and T, while keeping R close to 1. Some of our designs
reduce T at the expense of R.

II. FiniTe IMPULSE RESPONSE (FIR) FILTER

A. The Problem

Input: A 1Xw vector 4 and a 1 X(n+ w) vec-
tor X.

Output: A 1X(n+1) vector Y that satisfies (1).

Parameters:

C=(n+l)w, D=2(n+w)+1.

B. Broadcast Chain

The broadcast capability permits a very straightforward
and efficient solution to the FIR filter problem. We pro-
vide two such solutions. The first solution uses w PE’s and
has a throughput of T.=n+ w. The VLSI architecture is
shown in Fig. 3(a) and the algorithm executed by the
system is given in Fig. 4. Each PE has three registers, A4,
X, and Y. Z(i) denotes register Z of PE(i), Z€ {4, X, Y }.

The algorithm consists of two FOR loops. The first initial-
izes the A register of each PE such that A(i)=a,1<i<w.
Following this initialization, the system goes through n + w
—1 steps in which the following happens.

1) Each PE receives the same x value from the broad-
cast line. :

2) Each PE sends its Y value to the PE on its right.
PE(1) initializes its Y register to zero. PE(w) outputs its ¥
register.

3) Each PE updates its Y register to Y + AX.

The first two events occur concurrently, while the third
occurs after the first two have completed. It is easy to see
that the first w Y ’s output by PE(w) are garbage and the
next n+1 Y’s output are y,, y;,- - -, y, as given by (1).

In computing the performance figures for this VLSI
system, we note that B =2 as the system requires at most
one input and one output to occur concurrently. Observe
that there is no Y input to the system as PE(1) simply
initializes Y(1) to O internally. So, we get P=w, B=2,
Tc=n+w, To=n+2w+1l, Ro~1+w/n~1, R,~1+
w/(n+w)~1and R~1. ‘

The throughput of the VLSI system may be reduced to
o(n /k) by using k independent subsystems as in Fig. 3(b).
Each subsystem has w PE’s. Subsystem b computes y,,
[(n+1)/klb<i<[(n+1)/k](b+1),0<b< k. The per-
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Fig. 3. w PE broadcast chain.

for j «+1 to w do
A()) « o { input a; }

end

forj—0Oton + w — 1do

do in parallel

broadcast z; to X(1), 1<i<w
Y(i) « Y - 1) 2<i<w
Y(1) «+0

output Y (w) { output y; _, }
end

Y(i) «— Y(si) + A(1) * X(v)

end

1<i<w { each PE computes }

output Y(w) { output y, }

Fig. 4. Algorithm for w PE broadcast chain.

formance figures are P = kw, B=2k, To.=[(n+1)/k| +
w—1, Tp=[(n+1)/k|+2w, Rc ~1+(kw)/n~1, R, ~
1+2kw/(n+w)~1,and R~1.

One deficiency of this improved throughput design is
that the y,’s are not output in order (for example, y; is
output after y;, . 1y/x1)-

Our second broadcast chain VLSI design for the FIR
filter problem employs n+1 PE’s. Hence, it is applicable
only when 7 is known in advance. Often, in applications,
the value of n is determined by examining the y,’s. Hence,
it is a dynamic quantity.

The n PE architecture is shown in Fig. 5 and the
corresponding algorithm is shown in Fig. 6. As in the
previous design, each PE has the three registers: A, X, and
Y. PE(i) computes y,, 0<i<n. The contents of the X
registers following the first FOR loop are shown in Fig. 5. In

the second FOR loop, the n +1 PE’s compute their respec-
tive y,’s. This takes w iterations in which each PE does the
following;:

1) receive a; into its A register on the jth iteration,

2) shift its X register content to the PE on its right.
PE(n) inputs a new X while PE(0) simply loses its old X
value, :

3) update its Y value to Y + AX.

Events 1) and 2) are performed concurrently while event
3) occurs after the first two have been completed. Once w
iterations of this loop are completed, Y(i)=y;, 0 <i<n.
The n+1 Y values may now be output in n +1 time.

In obtaining the performance figures, we assume that the
initialization of the Y registers to zero is overlapped with
the initialization of the A registers. Consequently, we get
P=n+1, B=2,To.=w, Ty=2n+w+1, R-=1, R~
2, and R ~ 2. .

As in the case of our earlier design, the throughput can
be improved by using k subsystems, each having
[(n+1)/k] PE’s. The distribution of the y,’s computed by
each subsystem is the same as in the earlier design. The
performance figures are P ~n+1, B=2k, To=w, Tp=
2[(n+1)/k]+w—1, Ro~1, Rp~2+(kw)/(n+w)~
2, and R ~ 2. Note that when k = n +1, this reduces to the
case of n +1 independent PE’s.

C. Bidirectional Chain

Kung [2] and Leiserson [5] have proposed an O(n)
bandwidth bidirectional chain architecture to solve the
band-matrix X vector problem. Since the FIR filter prob-
lem is a special case of the band-matrix X vector problem,
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Fig. 5. n PE broadcast chain.
Y(1) «—0 0<i<n

for j«—0ton — 1do { input z4,...,2, _, }
do in parallel
A1) — X(r + 1) 0<i<n~-1
X(n) +— z;
end
end
for j «—1 to v do

do in parallel

broadcast a; to A(i), 0<i<n
X(1) «—X(f +1) 0<i<n—1
N(n) =244 s o

end

(i)« Y() + X(1) *A()  0<i<n

end

output yq,...,y,

Fig. 6. Algorithm for n PE broadcast chain.
the same architecture can also be used to solve the FIR
filter problem. However, since only one row of coefficients
of the band matrix is unique, only O(1) bandwidth is
required. The resulting architecture is shown in Fig. 7.

The x values are input from the right with one x value
entering every two cycles. The a values may be entered
from the left using the left-to-right connections. Hence, the
initialization process takes w cycles and leaves A(i) = a,,
I<i<wand X(i)=x,,, for i odd, 1<i<w. Following
this, there are 2n + w cycles in which each processor up-
dates its Y register to Y+ AX and then transmits its Y
register content right and its X register content left. A new
y and x value enter the system every two cycles.

The performance figures for this design are readily seen
tobe P=w, B=2, T-=2n+w, T,=2(n+w), R-~2,
R,~2,and R ~ 4.

Leiserson [5] has pointed out that pairs of processors
may be combined, as only half the processors are active at
any time. When this is done, R and R become 1 and 2,
respectively.

Robert and Tchuente [6] have proposed a w+1 PE
bidirectional chain with improved throughput. The same
throughput can be obtained using only w PE’s. Our new
bidirectional chain design is similar to that of [6] and to
that proposed in [9] for the back-substitution problem. Fig.
8(a) and (b) shows an example for each of the cases: w
even and w ‘odd. The corresponding algorithm is shown in
Fig. 9. The PE’s at the left compute all terms involving the
a;’s for i odd while those on the right compute all terms
for i even. All PE’s (except PE(w)) have three registers 4,
X, and Y. PE(w) has an additional register Z. Y values
move towards the middle PE, PE(w), while X values move

from the middle to the two ends. In each cycle, each PE
(except PE(w)) computes Y < Y + A X, while PE(w) com-
putes Y < (Y + Z)+ AX. Hence, the computation time per
cycle is max{#,pp, tpur } + fapp Where 2app is the time to
add and 1,y is the time to multiply. Assuming that
tapp < Iyu, this time is the same as for the other designs.

The performance figures for the design are P =w, B =2,
Te=n+|w/2]+1, T,=n+2w+1, R-~1, R, ~1, and
R~1.

The throughput can be further improved. One way to
accomplish this is to use k subsystems of w PE’s each as
we did with the w PE broadcast chain design. As remarked
there, the resulting VLSI system does not compute the y.’s
in ascending order of i. An alternative is to distribute the
»;’s such that subsystem b computes y,, i=b+ jk, j=
0,1,2,3,---. In this case the y,’s are computed in the right
order. Fig. 8(c) shows the design for the case w=38 and
k = 2. The first subsystem is used to compute all the y,’s
for i even and the second to compute all the y,’s for i odd.

* The computation of each such y, is divided into four

independent subcomputations. We note that the method
may be extended to get an o(n /k) throughput design for
any fixed k by computing k y,’s in each cycle. Unlike the
back-substitution problem [9], the scalar product (1) does
not need to be put into another form since all the x,’s are
available before computation starts. The VLSI system that
incorporates this is quite a bit more complex. We shall not
present the details here.

D. Unidirectional Chain

References [3] and [4] have proposed a unidirectional
chain design to solve the FIR filter problem. Fig. 10(a)
shows their architecture. The corresponding algorithm is
given in Fig. 11. Each PE has four registers: 4, X, Y, and
Z. The Z register is used to delay the rightward motion of
the x’s. Each x value enters a PE through its Z register,
then moves to the X register in the next cycle, and exits on
the following cycle to the Z register of the PE on its right.

The operation of the VLSI system has two phases to it.
The first is the initialization phase in which A(i) is initial-
ized to a,. While this is happening, half the PE’s get their X
and Z registers initialized to x values. Fig. 10(b) shows the
status after this. In each cycle of the second phase, the X,
Z, and Y values move rightwards and the Y values get
updated. Fig. 10(c) shows the status following w cycles of
the second phase. The algorithm is given in Fig. 11.

The performance figures of this design are P =w, B =2,
Tr=n+w, Tp=n+2w+1, Rc~1+w/n~1, Rp~1+
w/(n+w)~1,and R~1.

Once again, the throughput may be improved using the
strategy of Section II-B. An alternative which results in the
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Fig. 7. Bidirectional chain.
A(f) «— q; 1 <i<w { input g, }
v - y, for j+1to l(w - 1)/2] do
do in parallel
X(w) = X(w - 1) —  _,
@ w=d X(5) = X(i +2) 1<i<w-2
end
end

Ya - - - - Yn

R b = L] = T
Vavavo- - === Yeun

L Ye Yo Yo — n-1 1 ToTe Ty - -
S YsVaYo— — -

ToTyTg .
i =L :
S Ys¥s ¥y — — n-m + Yodd

B iy Tee s«
. Y Yadi — n-1 17y
vevan - - BI==l =

() w=8 k=2

Fig. 8. Improved throughput bidirectional chain. (a) w = 4. (b) w=5.
©)w=8, k=2.

»;’s being output in ascending order of i is described
below. For any fixed k, each PE has k +1 X registers and
k Y registers. A total of w PE’s are used. The k£ +1
registers are set up in k rows with one row having two
registers. The row with two registers shifts up cyclically as
we move to the right on the chain of PE’s. Fig. 12(a) shows
the case k =2, w=>5 and Fig. 12(b) shows the case k = 3,
w=>5. Each PE has enough hardware to update all its
registers in parallel. In.each cycle of the VLSI system, the
following events occur.

1) Each PE transmits X values to the right. For some X
registers, this is an inter-PE transfer [e.g., x;; moves to the
register currently containing x, in Fig. 12(a)]. For others,
this is an intra-PE transfer (e.g., x5 is transferred to the

for j«—1ton + w do
do in parallel

)&(w) +— }\(w — 1) = I’_+ (w—l)/QJ-—l

1<i<w-2
3<i<w

X(1) «— X(i + 2)
Y(i) — Y(i — 2)
Y(1) « Y(2) — 0
Z(w) « Y(w — 1)

output Y(w) { output L lw/?J—Q }

end
do in parallel
Y(w) « (Y(w) + Z(w)) + A(w) * X(w)
Y(#) — Y(i) + A(¥) * X(s) 1<i<w—1
end
end

output Y(w) { output y, }

Fig. 9. Algorithm for improved throughput bidirectional chain.

register currently containing x,,). The leftmost PE inputs k
x values into its k leftmost X registers.

2) Each PE transmits k Y values to the right. The
leftmost PE zeros its k Y registers.

3) Each PE updates its & Y registers by computing
Y« Y+ AX. The X value used varies with each PE. For
example, in Fig. 12(a), each PE uses its square register to
update all even y,’s and the circle register for the odd y,’s.

Events 1) and 2) occur in parallel while event 3) occurs
after events 1) and 2) have completed. Let us trace y,
through the system of Fig. 12(a). We see that the terms
accumulated are x,,a5+ Xy;a,4 + X 005 + Xqa, + xga;. A
formal correctness proof is easily obtained.

In obtaining the performance figures for this design, we
count each PE as k PE’s as the hardware in each is about k
times that in each of the PE’s used in our earlier designs.
So, we get P~kw, B=2k, T.=[(n+1)/k]l+w-1,
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Fig. 10. Unidirectional chain.
Key: D register used to compute Y .,
O register used to compute y,qg
for j +—1 to w do
PE 5 4 3 2 1
do in parallel
5 ag ay ag a, a,
A(w) « g { input a; }
pra o S e EHEER BHOE-
== wmd@ aH HH® =H FHG -
3 input z; _
Z(w) < z; {input z; _, } vs Yo [ ve v Yo [ Yewen
X{(¢) «— Z(v) 1<i<w ve i vr i ve I v v Lo iz
Z(i) +— X(1 + 1) 1i<i<w-1
end (A) k=2, w=5
end
for ] —lton 4+ w do Key: gregister used to compute yg, Y3, -.-
) register used to compute y;, yy, ...
i llel
do m para e Oregister used to compute Yo, ¥s, -
Y(w)+ 0 { initialize y; _, to O }
A PE 5 4 3 2 1
Y(i) +— Y(i + 1) 1<i1<w-—1
output Y(1) { output y; o _1} o oy a a o
»-Hq’zx*"@"ls”" Tyo| ™ -'@ I3
Z(w) <~ zj 401
. : ST T Tie [ @*"‘@ 7 ~' @
X(3) « Z(¥) 1<i<w
. . T Tog—¥ @—-@znl—- _. @;_.®__
Z(5) — X(i + 1) 1<i<w-1
Yiz ™ Yo ™ Ye ™ Yys Yo
end Vi3 Yo % yr Ya L2 0 and
Y(') = Y(i) + A(') * X(') 1 S ' —-<— w Yis Yyu Ys Ys Y2 >
end
(b) k=3, w=5

output Y(1) { output y, }

Fig. 12. Improved throughput unidirectional chain. (a) k =2, w=35. (b)

Fig. 11. Algorithm for unidirectional chain.

k=3, w=5.
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Fig. 13. Systolic ring. (a) w=3, k=2. (b) w=4, k=2. () w=3,
k=3. :

T[(n+1)/k] +2w, Re~1+(kw)/n~1, R,~1+
2kw/(n+w)~1,and R~1.

E. Systolic Ring

A simpler improved throughput architecture results from
using a systolic ring. Our design requires kw PE’s and is as
shown in Fig. 13. First, consider the case k = 2. The upper
row of PE’s [Fig. 13(a) and (b)], row 1, computes all the
even y.’s (Yo, V5, " - - ), While the bottom row of PE’s com-
putes all the odd y;’s (¥, y3, - --). Fig. 13(a) shows the
case for w=3, k=2, where k is the number of rows of
PE’s and Fig. 13(b) shows the case for w=4, k = 2. As can
be seen, there is a minor difference in the input pattern
between the case w odd and the case w even. We will
consider only the case when w is even. The case when w is
odd is similar or it can be simulated by adding one more

for j «+1 to w do { w is assumed even }
do in parallel

A(lw) «— A(2,w) « q; { input a; }

A(pi) — A(p.t + 1) 1<i<w-1, 1<p<2
Z(Lw) < Zoj —wf2—1) +1 J>w/2
X(2,w) «—= 7o _up2—y) 1> w/2
X(1.1) «— Z(1.,4) 1<i<w
Z(1,1) «— X{(21 + 1) 1<i<w-1
X(2,6) e X(1i + 1) 1<i<w-—1
end
end
for j «1 to ln/?} + w do
do in parallel
Y(p.w)—0 1<p<L2
Y(p.i) «— Y(p.i + 1) 1<i<w-1, 1<p<2
output Y{p,1) 1<p<2
Z(1,w) «— Zy5 4efp—1)+1
X(2w) — 795 4upz 1)
X(1,0) «— Z(1,9) 1<i<w
Z(1,3) +~ X(2,0 + 1) 1<i<w-1
X(2,¢) — X(1,f + 1) 1<i<w-1
end
Y(p.i)«— Y{p.i) + Alp.§) * X(pd) 1<i<w, 1<p<2
end

output Y(p,1) 1<p<2

Fig. 14. Algorithm for systolic ring.

term so that w becomes even. The working of the system is
described formally in Fig. 14. P(i, j) refers to register P of
PE(j)of row i, PE{A, X, Y, Z}, i€ {1,2}.

The performance figures for this design are P =2w,
B=4, T.=|n/2|+w, Tp=|n/2]+2w+1, R-~1+
w)/n~1, R, ~1+(3w)/(n+w)~1,and R~1.

The above design can be generalized to the case of kw
PE’s for k any constant. Fig. 13(c) shows the case when
w = k = 3. The resulting architecture is similar to the sys-
tolic ring architecture for LU decomposition proposed by
Kung and Lam [4]. The only difference is that data moves
in the same direction instead of moving in opposite direc-
tions. The performance figures for this design are easily
seen to be P =kw, B=2k, To= |n/k|+w, T,= |n/k|
+2w+1, Ro~1+kw/n, Rpy~1+Qk—-1)w/(n+w),
and R~ 1+ kw/n)1+Q2k —-1)w/(n+ w)). '

III. SUMMARY

In this paper, we have reviewed previously known VLSI
architectures for the FIR problem and aiso developed some
new ones. Specifically, we have developed new solutions
for broadcast chains, bidirectional chains, and rings. In
addition, we have shown how the throughput may be
improved for all of the architectures considered. The per-
formance figures for the basic VLSI architectures con-
sidered in this paper are summarized in Table I. As can be
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TABLE I
PERFORMANCE SUMMARY
Architecture
Broadcast Bidirectional Unidirectional
Performance
Chain Chain Chain
[KUNG79} Our [KUNGS2]
P w n+1 w/2 w w
B i 2 2’ 2 2
Tc n + u w 2n + w n+lw/2J n+ w
Tn n+2w | 2n 4+ u 2(n + w) n+ 2w n o+ 2u
Re 1 1 1 1 1
Ry 1 2 2 1 1
R 1 2 2 1 1
C=(n+ 1w, D=2n+uw)+1
TABLEII
PERFORMANCE SUMMARY
Architecture
Performance Broadcast Bidirectional | Unidirectional Systolic
Chain Chain Chain Ring
g kw n+1 kw+k(k—1) kw ku
B 2% 2k K(k+1) 2k 2k
Te HZI +w N o(n/k) ":] +w % +uw
+1 +1 1
Tp ‘"‘rl 2u 2 "—k~ +w o(n/k) ": +2w % +2u
Re 1+(kw)/n 1 1 1+(kw)/n 1+(kuw)/n
Ro LN (k41)/2 e ke B lu
n4uw ntuw ntw (n+u)
R 1 2 (k+1)/2 ~1 ~ 1
C=(n+1w,D=2n+w)+1
seen, all three architectures: broadcast chain, unidirec-

tional chain, and bidirectional chain approach an R of 1
while providing about the same throughput. Table II sum-
marizes the performance figures for the improved
throughput designs. Only in the case of a bidirectional
chain are we unable to get a design with R =1.
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