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Abstract

In this chapter, we describe different reconfigurable mesh with buses architec-
tures and show how several image processing problems can be solved
efficiently on the weakest of these. The specific problems considered are: area
and perimeter of components, shrinking and expanding, clustering, and tem-
plate matching. In many cases, the resulting algorithms are faster than those
for other parallel computer architectures.

1. Introduction

Recently, several researchers have proposed a modification to the well studied
mesh architecture in which the interprocessor links are replaced by a
reconfigurable bus. The resulting parallel computer architecture is called a
reconfigurable mesh with bus (RMB). In all two dimensional N X N RMB com-
puters, the N processors are located at the N grid points of an N X N grid (just
as in a traditional mesh computer). However, the traditional linkage between
mesh adjacent processors is absent. Instead, interprocessor communication
takes place via a reconfigurable bus. The RMB family of architectures includes
the RMESH, PARBUS, polymorphic torus, and the mesh reconfigurable net-
work (MRN). The architectures have become popular because they are rala-
tively easy to program and because many problems can be solved very
efficiently on them. In fact, it is possible to solve some problems faster on an
RMB computer than is theoretically possible on a PRAM computer (See for
example: [10, 34, 35, 39]).

*This research was supported, in part, by the National Science Foundation under grant
MIP-9103379.



68 .

In the RMESH [53, 26, 27, 28] version of an RMB (Fig. 1), the bus is
comprised of 2V (N-1) segments that correspond to the 2N (N—1) interprocessor
links in a traditional mesh. However, each of these segments has a switch on it.
The switch on a bus segment may be set in the open or closed position by either
one of the two processors at the ends of the segment. With the switch on each
segment closed, all N? processors are attached to the same bus. As a result, if
any one processor writes data to this bus, all remaining processors can read this
data from the bus in the next cycle. Le., it is possible to broadcast data in O(1)
tme. -
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Fig.1 A4 x4 RMESH

By opening the switches on all vertical bus segments and closing them on
all horizontal ones, we form N independent buses with each one spanning the
processors in a row of the mesh (Fig. 2(a)). Column buses that span all proces-
sors in the same column may be formed by closing all switches on column seg-
ments and opening all on row segments (Fig. 2(b)). As in other work dealing
with the RMESH model, we assume that the the time to broadcast data on a bus
or subbus is O(1). In the exclusive write model, only one processor can write
data to a given (sub)bus at any time. In the concurrent write model several pro-
cessors may simultaneously write to the same (sub)bus. Rules are provided to
determine which of the several writers actually succeeds (e.g., arbitrary, max-
imum, exclusive or, etc.).

The PARBUS of [51, 52] is also a member of the RMB family. An N x N
PARBUS (Fig. 3) is an N x N mesh in which the interprocessor links are bus
segments and each processor has the ability to connect together arbitrary sub-
sets of the four bus segments that connect to it. Bus segments that get so con-
nected behave like a single bus. The bus segment interconnections at a procces-
sor are done by an internal four port switch. If the up to four bus segments at a
processor are labeled N (North), E (East), W (West), and S (South), then this
switch is able to realize any set, A = {A;, A,}, of connections where A; c
{N.E,W,S},1<i<2 and the A;’s are disjoint. For example A = {{N,S}, {E,W}}
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results in connecting the North and South segments together and the East and
West segments together. If this is done in each processor, then we get, simul-
taneously, disjoint row and column buses. If A = {{N.,S},¢}, then only column
buses are formed. Similarly, when A = {{E,W}, ¢} only row buses are formed.
If A = {{N,S.E,W},0}, then all four bus segments are connected. PARBUS

algorithms for a variety of applications can be found in [29, 52, 23, 10, 11, 12

2

13, 36, 37, 38, 49]. Observe that in an RMESH the realizable connections are
of the form A ={A,},A; c (NE,WS].

Fig.3 A4 x4 PARBUS

The polymorphic torus and the mesh reconfigurable network (MRN) are
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two other members of the RMB family. The polymorphic torus architecture
[21, 22] is identical to the PARBUS except that the rows and columns of the
underlying mesh wrap around and it possible able to connect together arbitrary
subsets of the bus segments that connect to the processor. Specifically, in each
row, there is an additional bus segment that connects the rightmost port in the
row to the leftmost port in the row and in each column there is a bus segment
that connects the lowest port in the column to the topmost one. In an MRN [2],
the processor and bus segment arrangement is exactly as for the PARBUS.
However the switches internal to processors are able to obtain only the 10 bus
configurations given in Fig. 4. Thus an MRN is a restricted PARBUS.
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Fig.4 Allowable switch configurations in an MRN

While we have defined the above reconfigurable bus architectures as
square two dimensional meshes, it is easy to see how these may be extended to
obtain non square architectures and architectures with more dimensions than
two. In this chapter, we shall confine ourselves to image processing algorithms
that run on an RMESH. While these same algorithms can be run on a PARBUS,
polymorphic torus, and an MRN with no loss in run time, one can often obtain
faster algorithms for these other architectures. The reader is referred to the
cited references for work on these other architectures. MacKenzie [MACK93]
has shown that there are problems that can be solved faster on the other models
than on the RMESH. Furthermore, Jang et al. [13] have shown how many
(though not all) of the connections supported by the remaining models can be
simulated by an RMESH with no loss in run time. However, the simulating
RMESH needs 16 processors for each processor in the simulated model and the
required I/O configuration must be modified so that data is at just one processor
in each 4 x 4 group of RMESH processors.

In this chapter, we shall study RMESH algorithms for the following
image processing applications: area and perimeter of components, shrinking
and expanding, clustering, and template matching. RMESH algorithms for
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histogramming, histogram modification, and the Hough transform can be found
in [17] and [15]. It should be noted that Jang et al. [11] have developed a histo-
gramming algorithm for a PARBUS. They state that the algorithm can be simu-
lated on an RMESH. However, this simulation requires a 16 fold increase in the
number of processors and requires that the input be properly configured. To
obtain the initial configuration from one in which the N X N image resides in an
N x N block of the 4N x 4N RMESH requires O(V) time as the bandwidth avail- -
able for the rearrangement is only O(N). This rearrangement time exceeds the
total run time of our algorithms which require only an N x N RMESH.

RMESH algorithms for some other image processing problems can be
found in [26, 27, 28]. [34] develops constant time RMESH algorithms for some
problems from computational geometry.

2. Data Manipulation Operations

2.1. Data Diagonalization

In this, a specific row or column of elements is moved to the diagonal positions
of the window which contains that row or column. This is illustrated in Fig. 5.
This can be accomplished in O(1) time by broadcasting the row (column) along
column (row) buses and having the diagonal processors read the data from their
bus.

N B ] W =
W

(a) 4th row (b) 1st column (c) diagonalize
Fig. 5 Diagonalize 4th row or 1st column elements of a 5x5 window

2.2. Window Broadcast

The data to be broadcast is initially in the A variable of the PEs in the top left
wXxw submesh. These PEs have ID (0,0) .. (w—1,w—1). The data is to tile the
whole mesh in such a way that A (i,j) = A (i mod w,j mod w) (A (i,j) denotes
register A of the PE with ID (7,j)). This can be done in O (w) independent of the
size of the RMESH [18].
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23. Prefix Sum

Assume that N2 values Ag,A1,....,Ay2_; are initially distributed in the A vari-
ables of an NxN RMESH such that A(i,j) = Awv.j, 0<i,j, <N. PE (i,)) is to
compute a value Sum (i,j) such that

iN+j
Sum(i,j)= > A, 0Zi,j<N
k=0 .
An O (logN) algorithm for this is given in [26].

2.4. Data Sum

Initially, each PE of the NxN RMESH has an A value. Each PE is to sum up the
A values of all the N2 PEs and put the result in its B variable. Le., following the
data sum operation we have :

N-IN-1

B@,j)=3 YAk, 0<i,j<N

k=01=0
This can be done in O (logN) time by first performing a prefix sum [26] and then
having PE (W-1,N-1) broadcast Sum (N—1,N-1) to the remaining PEs in the
RMESH. For this, all switches can be closed.

2.5. Ranking

Consider the linear ordering of the N2 PEs defined by row major order. Le., PE
[i,j] is in position iN +j of this ordering. Assume that each PE has a Boolean
variable selected. If selected (i,j) is true then rank (i,j) is the number of PEs
with selected (i,j) true that precede it in the defined linear ordering. If
selected (i,j) is false, then rank (i,j) is undefined. N2 elements can be ranked
using N2 processors in O(logN) time using the prefix sum operation. However,
N elements on a single column or row can be ranked in O(1) time on an N X N
RMESH [18].

2.6. Shift

Each PE has data in its A variable that is to be shifted to the B variable of a pro-
cessor that is s, s > 0, units to the right but on the same row. Following the
shift, we have

.o _ | null J<s
BGI) = 1AG j-s), j25
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A circular shift variant of the above shift requires
B(i,j)=A(, (j—s) mod N)

The circular shift operation can be extended to shift in 1xW row windows or

Wx1 column windows. Let RowCircularShift (A,s,W) and ColumnCircularShift

(A,5,W), respectively, be procedures that shift the A values by s units in win-

dows of size 1xW and Wx1. Let A” and A”, respectively, denote the initial and
final values of A. Then, for ColumnCircularShift we have

A™(G,j) = Af(q.)
where PEs (i,j) and (q.j) are, respectively, the a =imod W'th and

b = g mod W’th PEs in the same Wx1 column window and b = (a—s) mod W.
All variants of shifts described above can be done in O(s) time [18].

2.7. Data Accumulation

In this operation PE (i,j) initially has a value 7(i,j), 0<i,j < N. Each PE is
required to accumulate M I values in its array A as specified below:

Alq1G.j) =10, ( + q) mod N)
This can be done using 2M — 1 broadcasts [18].

2.8. Consecutive Sum

Assume that an NxN RMESH is tiled by 1xM blocks (M divides N) in a natural
manner with no blocks overlapping. So, processor (i,j) is the j mod M’th pro-
cessor in its block. Each processor (i,j) of the RMESH has an array
X[0.M-1]@,j) of values. If j mod M = g, then PE (i,)) is to compute S (i,j)
such that

M-1

SEH=2XX[QIGGdivM)*M +7r)

r=0
That is, the ¢’th processor in each block sums the ¢’th X value of the processors
in its block. The consecutive sum operation <an be done using 3M -3 broad-
casts [18].

2.9. Adjacent Sum

There are two forms of this operation: row adjacent sum and column adjacent
sum. In each, PE (i,)) begins with an array X [0..M —1](i,j) of values. In a row
adjacent sum, PE (i,) is to compute
M1
S@) = X XI[qlG (+g)modN), 0<i,j <N
q=0
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While in a column adjacent sum it is to compute
M-1
SGj) = X X[ql(+9)mod N,j), 0<i,j <N
gq=0

Both forms of adjacent sum can be done with 3(M —1) broadcasts [18].

2.10. Sorting

N2 elements, one per processor, can be sorted in O (N) time on an NxN RMESH
by simulating the O (N) sorting algorithm for ordinary mesh computers [31].
When N elements are to be sorted on an N x N RMESH the sort can be accom-
plished in O(1) time [35]. The initial and final configuration has the data in row
0 of the NxN RMESH.

2.11. RAR and RAW

The random access read (RAR) and random access write (RAW) operations are
defined in [32]. In a RAR each PE has a read address associated with it. This is
the address of the PE whose A variable it wishes to read. In a RAW each PE has
a write address which is the address of the PE to which it wishes to send the
value of its A variable. Conflicts may be resolved arbitrarily. Miller et al. [26]
have developed RMESH algorithms for RARs and RAWs. When £ data items
are to be moved in the RAR or RAW, their algorithm takes O (Vk + logN) time,
k <N2. If the number of source and destination processors in each kxk block of
PEsis O (k), 1 <k <N then their algorithm takes O (logN) time.

‘When the source and destination processors are all on a single row of an
NxN RMESH, then RARs and RAWSs can be done in O (1) time [18].

3. Area And Perimeter Of Connected Components

Let 7[0.N-1,0.N—1] be a binary image. Two pixels [u,v] and [w,x] are adja-
cent iff either |u-w|=1and [v—x| =0or |u-w| =0and |v-x| = 1. The
transitive closure of this adjacency relation taken over the nonzero pixels of I
partitions  these nonzero pixels into equivalnece classes called
connected components.

The initial configuration for the problems considered in this section is one
in which each pixel is labeled by its component number. Specifically, each
entry of / is a record with at least the two fields: value and comp. I[i,j].value
is a 0/1 pixel value and I[i,j].comp gives the component to which this pixel
belongs. If I[i,jl.value =0, then I[i,jl.comp =0. If I[i,jl.value =1, then
I[i,jl.comp > 0. On an NxN RMESH, the area and perimeter can be deter-
mined in O (logN) time [16]. These operations can be performed on O(1) time
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on a PARBUS with O(p*n?*%) and O( max {n,p}*n?*€) processors where p is
the number of image components and € is any fixed constant greater than zero
[23]. We develop the RMESH algorithm of [16] here.

3.1. Area

3.1.1. CRCW PRAM Algorithm

It is instructive to first consider a CRCW PRAM version of our algorithm. We
assume, for simplicity, that N is a power of 2. Our algorithm employs the
divide-and-conquer approach [8]. Initially, we assume that each pixel is
independent of the others; then we combine together blocks of pixels to obtain
larger blocks. Two kinds of block combinations are performed: horizontal and
vertical. When two horizontally adjacent blocks of size 2'x2' each are com-
bined, we get a single block of size 2'x2'*!. When two vertically adjacent
blocks of size 2'x2°*! are combined we get a block of size 2/*!x2/*!, Begin-
ning with 2°x2° blocks, we alternately combine pairs of horizontal adjacent
blocks and pairs of vertical adjacent blocks until only one NxN block remains.
With each pixel [i,j] we associate two additional fields: update and area.
update is a Boolean field and area is an integer field which will eventually be
the number of nonzero pixels in the component I [7,j ].comp. Initially, we have:

I[i,jl.area =1[i,jlvalue, 0<i,j <N

When two blocks are combined, the area fields of the boundary pixels are
updated to correspond to the number of pixels in the new combined block that
have the same comp value. Following each combination, the following is true:

I1: If [i,j] is a boundary pixel of one of the two blocks just combined, then
I[i,jl.area is the number of pixels in the new block with comp value
equal to [I[i,jl.comp unless I[i,jl.comp =0. In this latter case
I[i,jl.area = 0.

Consider the case of horizontal combination. Assume that two 2¢x2
blocks are being combined and that for every boundary pixel [i,/] of each block,
we have:

Ifi,jl.area = number of pixels in the block with comp value equal to
I[i,jl.compunless![i,j]l.comp = 0.

If [i,j] is a boundary pixel in block A (B) and I[i,j].comp > 0, then its
area value changes iff there is a pixel on the boundary of block B (A) with the
same comp value. This follows from the definition of a connected component.
If no pixel on the boundary of B (A) has comp value I [i,j].comp, then no pixel
in this block can have this comp value. Let [u,v] be a pixel on the boundary of
B(A) such that I'[i,jl.comp =1I[u,v].comp #0. Then the updated area value
for pixels [7,j] and [u,v] is I [i,jl.area +I[u,v].area. Pairs [i,j] and [u,v] of
matching pixels are found by dividing the boundary of each block into four
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lines: 2 horizontal and 2 vertical. Call these top (x), bottom (x), left (x), and
right (x), x € {A,B]}. Note that the lines are not disjoint. For example, top (A)
and left(A) share one pixel (at the top left corner). All 16 combinations of lines
from A and B are used to determine matching pairs. Each combination has the
form ((Y(A),Z(B)), Y,Z € {top,bottom,left, right}. The code of Figs. 6 and 7
describes how area is updated using a CRCW PRAM that has 2¢*! processors.
For this to work correctly, it is necessary that the area values be read by all PEs
before any PE attempts to write an area value. The complexity is O (1). The
code for the case of a vertical combination is the same. Since this combination
has to be done logN times starting with blocks of size 1x1 and ending with a
single block of size NxN, the complexity of the procedure to compute area for
boundary pixels is O (logN).

I[i,jlupdate := false,0<i,j <N
for sideA € {top, bottom, left, right} do
for sideB € {top, bottom, left, right } do
CombineLines(sideA, sideB);

Fig. 6 Combine blocks A and B

procedure CombineLines (sideA, sideB);,
{update area for pixels on boundary lines sideA and sideB of blocks of A and B }
Let |sideA | and |sideB |, respectively, be the number of pixels
on boundary line sideA of A and boundary line sideB of B;
PE (c,d) examines the ¢’th pixel, 0 < ¢ < |sideA | of sideA of A
and the d’th pixel, 0 < d < |sideB | of sideB of B.
Let these pixels, respectively, be [7,j] and [u,v];
ifI'[i,jl.comp =1[u,v].comp
then case
Ii,jl.update and not I [u,v ].update :
I[u,v].update := true; I[u,v].area :=1[i,jl.area;
not / [i,j l.update and I [u,v ].update :
I[i,jlupdate :=true;I[i,jl.area :=I[u,v].area;
not ! [i,j ].update and not I [u,v ].update:
I[i,jl.update := true; I[u,vl.update := true;
Ii,jl.area :=1{i,jl.area + I[u,v].area;
Ifu,v]area:=1[ijlarea;
endcase;
end;
Fig. 7 Combining two boundary lines

Once we have combined blocks as described above then it is the case that
the area of any component » is
max{/[i,jl.area | I[i,jl.comp = n}
To get the condition where I[i,jl.area is the area of the component
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Ifi,jl.comp, 0<i,j < N we can run the block combination process backwards.
The NN block is decomposed into 2 , each of these is then decomposed into 2,
and so on until we have N2 1x1 blocks At the start of each decomposition step,
the boundary pixels contain the correct area value. The decomposition results
in the correct area values in the boundary pixels of the decomposed blocks. The
process is similar to that described earlier for block combination and we omit

the details. '

3.1.2. RMESH Algorithm

The RMESH algorithm works like the CRCW PRAM algorithm. We need to
provide only the details for the code of Fig. 7 (i.e., procedure CombineLines).
Fig. 8 gives the RMESH code for the case of horizontal combination. An NxN
RMESH is assumed and PE (i,j) of the RMESH represents pixel
[i,j1,0<i,j < N. The code for a vertical combination is similar. The complex-
ity for both is O(1). So, the complete area determination algorithm takes
O (logN) time.

3.2. Perimeter

This can be done by preprocessing the image so that I[i,j] =1 iff [{,j] is a
boundary pixel. This preprocessing is straightforward and requires each pixel
to examine the pixels (if any) on its north, south, east, and west boundaries.
Following the preprocessing, we see that the perimeter and area of a component

are the same. Hence, the O (logN) algorithm of the preceding section can be
used.

4. Shrinking And Expanding

Let/[0..N-1,0..N—1] be an NxN image and let By, . [i,j] represent the block
of pixels:

{[u,v]] 0<u,y <N, max { |u—i|, |v—j| } <q}}

Rosenfeld [48] has shown that the g-step expansion, E?, and the g-step shrink-
ing, §7, of I are given by the equations:

Ei,jl= max {I[u,v]},0<i,j<N
[v]eBo, i/l

S, jl= min {I{u,v]},0<i,j <N
[wv]eBoy 41 [i.j]

Rosenfeld [48] }k)resems an algorithm for the pyramid computer which
computes §%-1 and E* at coarsely resampled points in O (k) time. The com-
plexity is valid for both binary and gray scale images. For unresampled binary
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procedure CombineLines(sideA, sideB);,
{RMESH version }
diagonalize the update, comp, and area values of sideB of block B and
broadcast on row buses to all PEs on the same row in block A;
the PEs of block A read their row buses and store the values read in
variables updateB, compB, and areaB, respectively;
diagonalize the update, comp, and area values of sideA of block A
and broadcast on column buses to all PEs on the same column in block A;
the PEs of block A read their column buses and store the values read in
variables updateA, compA, and areadA;
{now the PE in position [a,b ] of block A has the information from the
a’th pixel of sideA of A and b’th pixel of sideB of B}
Each PE (a,b) of block A does the following:
if compA = compB then
case

updateA and not updateB: updateB := true ;areaB := areaA;

not updateA and updateB: updateA := true ;areaA := areaB;

not updateA and not updateB : updateA := true ; updateB .= true;

areaA := areaA + areaB ; areaB := aredA ;

endcase;
{ broadcast back to sideB}
set up row buses in the AB combined block;
every PE (a,b) of block A for which updateB (a,b) is true
disconnects its W switch and broadcasts areaB;
the diagonal PEs of block B read their buses and if a value is read, this
is broadcast to the appropriate PE of sideB using the reverse of a diagonalize,
this PE in turn updates its areaB value and sets its update value to true;
{ broadcast to sideA }
this is similar to that for sideB;

Fig. 8 RMESH version of CombineLines

image expanding and shrinking in one dimension he developed an O (k?) algo-
rithm to compute 2! and EZ~!, The generalization to two dimensions results
in a complexity of O (2¥). Ranka and Sahni [44] show how S*~! and EZ~! may
be computed in O (k) time on an N2 PE SIMD hypercube. Their algorithms
apply to both binary and gray scale images. E? and S? are easily computed in
O (q) time on an NxN mesh connected computer. In this section we develop an
algorithm to compute E7 in O (1) time on an NXN RMESH. Our algorithm is for
the case of a binary image. $7, for binary images, can be similarly computed in
O (1) time.

Since shrinking and expanding are computationally equivalent, we con-
sider only expansion explicitly. From the equation for E?, it follows that

Eijl= max {Rujl},0<ij<N
(/1€ Bag 11 [i]
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where

Ru,jl= max {I{lu,v]} 0<u,j<N
[,v]leBoy1li,j]

=max {I[u,v]] |j—v|<q},0<u,j<N
The computation of R? may be decomposed into subcomputations as below:
left?[u,j1=max{I[u,v] | 0<j—v <q}
right?[u,j1 = max{l [u,v] | 0 <v—j <q}
R[u,j] = max{left?[u,j]1, right?[u,j1)
Similarly we may decompose the computation of E? from R? as below:
top?[i,j1 = max{R[u,j]1 | 0<i—u <q}
bottom?[i,j1 = max{R[u,j1 | 0<u—i <q}
E4[i,j]1 = max{top?[i,j], bottom?[i,j1}

{Compute R?[i,j] in variable R of PE [i,j]}
{Assume that 7 (i,j) = I [i,j] initially}
Step1 {Compute left?[i,j] in variable left of PE (i,j) }
{Find nearest 1 on the left }
PE (i,j) disconnects its N and S switches
if 1(i,j) = 1 then PE (i,j) disconnects its W
switch and broadcasts j on its bus
Step 2 PE (i,j) reads its bus and puts the value read
in its T variable
if j-T(i,j) < q then left(ij) = 1
else left(ij) =0
Step3 {Compute right?[i,j] by finding nearest 1 on right }
PE (i,j) connects its E and W switches.
if7(i,j) = 1 then PE (i,j) disconnects its
E switch and broadcasts j on its bus
{N and S switches are disconnected from Step 1}
Step4 PE (i,j) reads its bus and puts the value read
in its T variable
ifT(i,j)—j<qthen right(ij) =1
else right(ij) =0
Step 5 {Compute R}
R(i,j) := left(i, j) or right(i,j)

Fig. 9 Computing R for a binary image

The steps involved in computing R? for a binary image I are given in Fig.
9. The complexity is readily seen to be O (1). E? is similary computed from R?
in O (1) time. The algorithm of Fig. 9 assumes that all switches are initially
connected and that if a processor reads a bus and finds no value, the value o is
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used.

5. Clustering

The input to the clustering problem is an NXM feature matrix
F[0.N-1,0.M-1]. Row i of F defines the feature vector for pattern i. Thus
there are N patterns represented in F. Each column of F corresponds to a pat-
tern attribute. Thus, M is the number of pattern attributes. The objective of
clustering is to partition the N patterns into X sets S¢,S;, - -+ .Sx—1. Each §; is
called a cluster. Different methods to cluster have been proposed in [1], [4], [7],
[6], [47], and [50]. Here, we consider the popular squared error clustering tech-
nique. In this we begin with an initial (possibly random) partitioning (i.e. clus-
ters) of the patterns and iteratively improve the clusters as described below.

The center of cluster S; is a 1xM vector which gives the average of the
attribute values for the members of this cluster. The centers of the K clusters
may be represented by a KxM matrix C [0..K -1, 0.M —1] where C[i,*] is the
center of the i’th cluster §; and

. 1
CL.jl= I5i]

The squared distance, d2[i,k ], between pattern i and cluster £ is defined
to be the quantity

Y. Flg.j1,0<i<K,0<j<M
qES;

M-1
d2li,k1= Y (Fli,q] - Clk.ql)?
q=0

One pass of the iterative cluster improvement process is given in Fig. 10.

Step 1 [ Cluster reassignment ]
Newcluster [i] := jsuch that d2[i,j] =
min {d2[i,q]},0<i<N
0<q<k

[ In case of a tie pick the least j ]
Step 2 [ Termination and update ]
if NewCluster [i] = OldCluster [i]1,0<i <N
then terminate
else OldCluster [i] = NewCluster [i],0<i <N
Step 3 [ Update cluster centers ]
Compute C [*,*] based on the new clusters

Fig. 10 One pass of the iterative cluster improvement algorithm

The serial complexity of one pass of the iterative cluster improvement
algorithm is readily seen to be O (NMK). Parallel algorithms for this have been
developed by several researchers. Hwang and Kim [9] have developed an algo-
rithm for a multiprocessor with orthogonally shared memory; Ni and Jain [33]
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have proposed a systolic array; Li and Fang [20] have developed an
O (KlogNM) algorithm for an SIMD hypercube with NM processors; and Ranka
and Sahni [41] have developed an O (K + logNMK) algorithm for an SIMD
hypercube with NM processors as well as an O (logNMK) algorithm for an
SIMD hypercube with NMK processors.

In [14], we have developed a clustering algorithm for RMESH’s with N
processors. The time complexity of this algorithm is O (MK + KlogN). In the
remainder of this section we consider RMESH’s with NM and NMK processor. -
The algorithms for these cases have complexity O (KlogMN), and
O (M + logNMK), respectively.

5.1. NM processors

The NM processor RMESH is assumed to be configured as an NxM array of
processors. Initially, F (i,j) = F[i,j1,0<i <N,0<j<Mand C(i,j) =CI[ij]l,
0<i<K,0<j< M. The algorithm to obtain the new cluster assignments is
given in Fig. 11. Summing the E values takes O (logM) time. The remaining
steps each take O (1) time. The overall complexity is therefore O (KlogM).

D2(j,0):=0,0<i <N
fori:=0toK-1do
begin _
Set up column buses;
PE (i,j) broadcasts C (i,j) on its column bus, 0 < j < M;
PE (a,b) reads its column and saves the value read in D (a,b),
0<a<N, 0<b < M; :
E(a,b) := (F(a,b)—D (a,b))?;
Set up row buses;
Sum the E values in row g and save in § (a,0), 0<a <N;
if S (a,0) < D 2(a, 0) then
[NewCluster (a,0) :=i; D2(a,0):=S5(a,0)];
end;
Fig. 11 NM processors algorithm for cluster reassignment

Step 2 of Fig. 10 (i.e., terminate and update) is easily done in O (1) time.
The cluster centers may be updated in O (Klog//) time using the algorithm of
Fig. 12. The overall complexity of one pass of the iterative cluster improve-
ment algorithm is therefore O (KlogMN) on an NM processor RMESH.

5.2. NMK processors

The RMESH is configured as an NxMK array of processors with
F(@,jy=FIi,jl, 0<i<N,0<j<M and C(0,j)=Cl[jdivM, jmod M],
0<j < KM initially. Our RMESH algorithm for cluster reassignment (Fig. 13)
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for i :=0toK—-1do
{Compute center of cluster i }
begin
Set up row buses;
if NewCluster (a, 0) = i then PE (g, 0) broadcasts a 1 on its row bus
else PE (a, 0) broadcasts a0, 0<a < N;
PE (a,b) sets A (a,b) = F (a,b) if it reads a 1 on its bus,
otherwise it sets A (a,b) = 0;
Sum the A values on each column and save the result in the C variable
of the processors in row i;
end;

Fig. 12 Computing cluster centers with NM processors

begins by making K copies of the feature matrix. This can be done using M
broadcasts on row buses. The remainder of the alogrithm takes O (logMK)
time. Hence the complexity of the algorithm of Fig. 13 is O (M + logMK).
Step 2 of Fig. 10 is easily done in O (1) time.

Step1 Create K copies of F so that F (i,j) = F[i,j mod M,
0<j<KM,0<i<N.
Step2  Set up column buses and broadcast C (0,j) to C (*,5),0< j < KM.
Step3 A(.j)=FG.j)-CG,j)%0<i<N,0<j <MK
Step4 Sum A in each 1xM block of PEs. Store the result in the
B variable of the first processor in each block.
Step 5 Ineach row, a, of the RMESH, compute g such that
B(a,q) = min{B (a,j)| jmod M =0 };
store this g in NewCluster (a, 0);

Fig. 13 New cluster determination with NMK processors

The new cluster centers can be computed in O (logN) time by summing
the feature values in each cluster and dividing by the number of patterns in the
cluster. Column j of the RMESH is used to compute C[j div M, Jj mod M1].
The complexity of one pass of the iterative improvement algorithm is therefore
O (M + 1ogNMK) when NMK processors are available.

6. Template Matching

In this section we develop RMESH algorithms for the image template matching
problem. The inputs are an NxN image matrix 7 [0.N—1, 0.N—1] and an MxM
template matrix T'[0..M -1, 0..M —1]. The ouput is the two dimensional convo-
lution, C2D, of  and T which is defined as:
M-1M-1
C2D[i,j1= Y 3 II( +u) mod N,(j+v) mod N1*T[u,v],0<i,j <N
u=0v=0
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The serial complexity of computing C2D is O (N2M?). Parallel algo-
rithms for a variety of multiprocessor architectures have been developed.
Chang et al. [3] have developed an O (M? + logN) algorithm for a pyramid
computer with N2 processors at its base. Ranka and Sahni [41] have developed
an O (M?) algorithm for an N2 processor mesh connected computer. Maresca
and Li [25] and Lee and Agarwal [19] also develop mesh algorithms. Hyper--
cube algorithms have been developed by Fang, Li and Ni [5], Prassanna Kumar
and Krishnan [40], and Ranka and Sahni [42, 43]. The SIMD hypercube algo-
rithm of [42] uses N? processors and has complexity O (M? +logN) and the
MIMD hypercube algorithm of [43] uses N? processors and has complexity
O (M?). Ranka and Sahni [43] also report on experimental work with image
template matching algorithms for the NCUBE hypercube computer.

The RMESH algorithms we develop in this section have the following
characteristics:

Algorithm 1: N2 processors, O (M ) memory per processor, O (M?2) complexity.
Algorithm 2: N? processors, O (1) memory per processor, O (M2) complexity.
Algorithm 3: N2M? processors, O (1) memory per processor, O (M) complexity.

While one can obtain O (M?) RMESH template matching algorithms that
use N? processors by simulating the known mesh connected computer algo-
rithm of this complexity, the algorithms we propose are considerably simpler.

6.1. NZ Processors, O (M) Memory

The N? processors are configured as an NxN array. Initially, I(,j) =I[i,j],
0<i,j<Nand T(i,j)=TI[ijl,0<i,j < M. The desired final configuration is
C2D (i,j)=C2D[i,j], 0<i,j < N. This is accomplished in two steps. First,
each PE (i,j) computes an array C [¢]1(i,j), 0 < g < M of values such that:

M
ClqlG.j)= X1, G+v)mod N1 * T[q,v]
v=0
Next, C2D (i,j) is computed using the equation:
M-1
C2D(.j) = ¥ Clq)(G +q) mod N.j)
q=0

This is done by simply using the column adjacent sum oyeration of Section 2.9.
The details are given in Fig. 14. The complexity is O (M?).

6.2. N? Processors, O (1) Memory

Even when only O (1) memory per PE is available, template matching can be
done in O (M?) time. The algorithm repeatedly shifts the image and template



84

{Compute C 2D using O (M) memory per PE )
{ Step1, compute C [q1(,j),0<i,j <N,0<q <M}
Accumulate(A,I,M); {each PE accumulates, in A, the next M template values}
forg:=0toM-1do i
begin
Clq1G,j):=0,0<i,j <Nj
forv:=0toM-1do
begin
PE (gq,v) broadcasts T(g,v) to all PEs;
B (i,j) := content(bus), 0<i,j <N,
Clq1G.j):=ClqlG.j) +Av1G.j) * B(.j), 0<i,j <N;
end;
end;
{Step2, compute C2D (i,j), 0<i,j <N}
ColumnAdjacentSum (C 2D,C,M);

Fig. 14 N? processor, O (M) memory, template matching

values so that each PE (i,j) always has an image and template value whose pro-
duct contributes to C 2D (i,j). The algorithm is given in Fig. 15. The initial and
final configurations are the same as for the algorithm of Fig. 14.

C2D(i,j):=0;
foru:=0toM-1do
{ compute terms involving T [#,*] }
begin
A:=1
forv:=0toM-1do
{ compute terms involving T'[u,v] }
begin
PE (i,j) connects its N and W switches, 0 <i,j < N;
PE (u,v) broadcasts T (u,v);
A (i,)) := content(bus), 0<i,j < N;
C2D(i,j):=C2D (i,j)+ A(i,j) * 1(i,j), 0<i,j <N;
CircularRowShift (I,—1); {Shift left circularly by 1 }
end;
{ restore I values }
I:=A;
{ set up I for next v}
CircularColumnShift (I, 1); {shift up circularly by 1 }
end;
Fig. 15 N? PEs, O (1) memory algorithm for C 2D

While the asymptotic complexity of the O (M) memory and O (1) memory
algorithms is the same, the O (M) memory algorithm requires M? +3M-1)
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broadcasts while the O (1) memory one requires 4M?2 + 3M.

6.3. N2M? Processors, O (1) Memory

We assume that the N2M? processor RMESH is configured as an NMXNM array
and that initially, JGM,jM)=1[i,j], 0<i,j<N and T(@.j)=T[ijl,
0<i,j <M. The initial distribution of I for the case N =3, M =2 is given in
Fig. 16. The final configuration will have C2D (iM,jM)=C2DIi,j],
0<i,j <N.

7 8 9
7 8 9 1 2
4 5 10 3 4
1 2 3 4 5 10
(a) 3x3 image
1 2 1 2 3
3 4
(b) 2x2 template (c) initial distribution of image & template
on a 6x6 RMESH

Fig. 16 Example initial configuration of an N2M2 RMESH with N =3, M = 2.

The NMXNM processor array is naturally partitioned into N2 MxM pro-
cessor blocks as in Fig. 16 (c) (the partitions are of size 2x2 and are demarkated
by double lines). The (i,j)’th such block is used to compute all the terms
involving row i of the image that contribute to column j of C2D. For this, PE
(M +q,jM +k) first gets an image value from its row such that
I(iM +q,jM +k) =11[i, (j +k) mod N] (step 2 of Fig. 17). This can be done in
O (1) time. The image values are initially in PEs (iM,jM), 0<i,j < N. These
locations are divided into M equivalence classes based on the value of j mod M.
The values in each column can be broadcast to all PEs that need them using
three broadcasts each. The first broadcast sends the image value in column j to
row j mod M of its MxM sub RMESH. The next uses row sub buses to broad-
cast to the submeshes that need the image values. The third broadcasts on
column buses local to each sub RMESH. The template T is then broadcast, in
step 3, to all MxM windows resulting in the configuration:
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T(M +q,jM +k) = T[q,k],0<i,j <N, 0<k,g <M

This requires another M broadcast steps and uses the window broadcast algo-
rithm of Section 2.2. Step 4 computes the product of I and T in each processor
and requires no broadcasts. The result of this step is

C (M +q,jM +k) =I'[i, (j +k) mod M1+T[q.k),0<i,j <N, 0<k,qg < M

Step 1 Collect image values such that
1GM,jM +k) =11, (j+k) mod N1,0<i,j <N, 0<k<M
Step 2 Broadcast the I values in row 0 of each MxM block along columns
of the MxM block.
Following this, we have
I1GM +q,jM +k) =11i, (j +k) mod N1,0<i,j <N, 0<k,q < M.
Step 3 Broadcast the template T to all MxM blocks.
Step4 C(a,b)=1(a,b)*T(a,b),0<a,b <NM.
Step 5 Sum the C’sin %la_clh row of each MxM block to get

D (iM +g,jM) = Y, C(iM +q,jM +k), 0<i,j <N, 0<q < M.
k=0
Step 6 Broadcast D along Iows of each MxM block to get
DM +q,jM +k) = 3, C (iM +q,jM +k), 0<i,j <N, 0< g,k < M.

k=0
Step7 LetD (iM +q,jM +k) = nil if (i +M —~q) mod M #k, 0<i,j <N,
0<qk<M
Step8 Sum the non nil D values in each column in groups of size M to get
Cc2D
Fig. 17 N2M? processor algorithm

The next step is to sum the C values in each row of each MxM block to
get:

M-1

D (iM +4,jM) = Y, C(iM +q, jM +k)
k=0
M-

1
=Y I[i,(j+k) mod N1+ T[q,k]
k=0

This is done using the data sum operation which requires O (logM) broadcasts.
We observe now that D(iM +¢,jM) contributes to C2D[a,j] where
a = (i +M—q) mod M). In fact,

C2lajl= % D(M+q,jM)
(+M—q)mod M = a
To compute this sum efficiently, we assign column r of each MxM block the
task of computing C2D [a,;] for a mod M = r. For this, in step 6, we broadcast
D values along rows of each MxM block and then is step 7 the D’s not needed
to compute the C2D’s assigned to a column are set to nil. Step 6 takes 1 broad-
cast and step 7 takes 0. The C 2D values can now be computed by summing the
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non nil values in each column in groups of size M. This requires O (logM)
broadcasts. The total complexity of the N2M? processor algorithm is therefore
o).

The O (M) complexity of the N2M? algorithm is disappointing as this
results in a processor-time product of O (N2M*) which exceeds that of the serial
algorithm by a factor of O (M). However, using a data bandwidth argument we
can show that O (M) time is optimal given our initial configuration. Since the -
template is initially in the upper left MM block of processors and the template
is needed outside this block, M? pieces of dafa must flow out of the block.
However, only 2M —1 pieces of data can exit the block at any time as the block
boundary includes only 2M -1 processors. So, at least M2/(2M -D=0WM)
time is needed to broadcast the template to the rest of the RMESH.

7. Conclusions

The RMESH architecture (as well as its relatives such as the PARBUS,
plymorphic torus, and MRN) are well suited for the solution of image process-
ing problems. In many cases, the problems can be solved faster than on other
proposed architectures. The RMESH algorithms are often conceptually simpler
than the corresponding algorithms on other parallel architectures.
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