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L INTRODUCTION

HE & = 2 input/output Benes permutation network

B{n}isshownin Fig. 1. Each of the smaller boxes repre-
sents a binary (or two state) switch (Fig. 2). The states of a
binary switch will be referred o as zero and one. The network
B(n} consists of a stage of N /2 binary switches followed by two
copies of the network B(n ~ 1), followed by another stage of
N /2 binary switches. B{1) is simply the binary switch of Fig,
2. The number of stages in B{#n) is therefore 2 log N — | (all
logarithms in this paper are base 2). The total number of bi-
nary switches in the network is N log NV — N/2. The Benes
network is capable of connecting its inputs to its outputs ac-
cording to any of N! permutations. The network finds appli-
cation as a subnetwork of a generalized connection network
{9]. The Benes network could also be used in an SIMD (single
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instruction stream. multiple daia stream) computer to inter-
connect the IV processing clements (PE’s). In this configuration
PE({),0 </ < NI, is connected to both input i and output
i of B{n). In an alternate configuration of an SIMD computer,
the Benes network can be used 1o connect the N PE’s to N
memory modules, where PE(/) and memory module f are re-
spectively connected to input / and output i of B(n).

Since the Benes network has O{log N) stages, there is an
O(log V) delay in transmitting data from the input terminals
of the network to the output terminals. In practice, however,
the time needed 1o accomplish an arbitrary input to output
permutation is considerably larger as the switch settings must
be determined first, and this is not a simple problem. Let D =
(Do, Dy, -, Dy be an arbitrary permutation of (0, 1, -,
N — 1). The setup problem is to compute from D the state of
all switches in B(n} so that input / is connected to output D;,
0 %7 =N~ 1. The best known setup algorithm runs in 0{V
log N} time on a single-processor machine (see Waksman
[10)). ,

The setup problem for the Benes network can be solved more
efficient]ly by vsing an SIMD computer. {To avoid confusion,
consider the Benes network completely detached from the
SIMD machine.) We give the permutation D = (Dy, Dy, - - -,
Dpy..q) to the machine. It returns ¥ log N — /2 bits, where
each bit is the state of a switch in the Benes network. Nassimi
and Sahni {7] have developed paraliel set-up algorithms using
four different SIMD models. In these models each PE has a
private local memory. The models differ in the way the PE’s
are interconnected. Let N’ be the number of PE’s. The four
SIMD models are as foliows.

1) Completely Interconnected Computer (CICY: In this
model every pair of PE's is directly connected. Let R{/) be a
data word in the “routing register” of PE(/), 0 < i < N/ — 1.
Any permutation of (R(0), R(1),- -+, R(/V — 1)) may be re-
alized on this model in a single step.

2y Mesh Connected Computer (MCC): In this model the
PE’s are logically arranged as in a two-dimensional array 4(0:
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m o= 1, 00m — 1), where N' = m?. The PE at location 4{i, j)
is connected to the PE’s at locations A & 1. jjand A(i,j +
[}, provided they exist.

3y Cube Connecied Computer (CCOY. Assume that N* =

2mand let i,y - 0o Be the binary representation of i forf &
[0, = 1], Let i) be the number whose binary representa-
HOWIS et - fpg 1ipifey o, where sy is the complement of

ip and 0 = b < n In the cube model PE(Y is connected to
PEG!) 0 < b <n

4}y Perfect Shuffle Compuier (PSCY. Let N, n, i, and i) .
be as in the cube modcel. In the perfect shuflle model. PE(/) is
connected to PEGOY, PE(,_aip—3 - igin—) and PE(-
gin—1in—2 - I} These three connections are, respectively,
called exchange. shuffle. and unshuffle.

1t should be noted that in a CIC, MCC, CCC, and PSC,
each PE is directlv connected to N~ 1, 4, log ¥, and three
other PE's. respectively.

Let NV be the number of inputs/outputs of the Benes net-
work. The parailel setup algorithms developed by Nassimi and
Sahni [7] run in OClog” N). O(N'/?), and 0(k log® V) time,
respectively, onan ¥V ~ PE CIC, N2 x NP MOCC, and a
CCCor PSCwith NYFVAPES 1 < & < log V. So. even with
these parallel setup algorithms, the time needed 1o perform an
arbitrary permutation on the Benes network is dominated by
the setup time.

Permutation networks have been proposed in the literature
that are casier 1o set vp than the Benes network. These, how-
ever, ¢ither have much larger transmission delay or use con-
siderably more (binary) switches. For example, a full crossbar
is trivial to set up, but uses O(N7) swiiches. The permutation
network of Lang and Stone [3] is easy to set up but has a delay
of (N, Batcher's sorting network [11] is sell-routing, but
has 0(log? ) delay and O(N log? N) switches. Nassimi and
Sahni [13] have proposed a class of easy to set up permutation
networks. Let N = 27 be the number of inputs and outputs. For
agiven M, M & {2, 4, -, N|, the permutation network of [13]
has O(VM(1 + log N — log M) log N/log M)} binary switches,
O(log® N/log M) iransmission delay, and can be set up in
O(log? N /log M) time.

In this paper we investigate the possibility of rapidiy ob-
taining the switch settings of the Benes network for certain
classes of permutations. We show that by providing a “desti-
nation tag” with each signal and by adding some simple logic
to each switch in the Benes network, it is possible for each
switch to determine its own setting dynamically (i.c., when it
receives the incoming signal). The resulting network can
perform certain permutations in 0(log V) time (including the
set-up time). We analyze the set of permutations F realizable
on our “self-routing” network. We demonstrate the richness
of the set F' by showing that it includes most classes of per-
mutations studied in the parallel processing literature.

To describe cur simple control logic, let D, be the “desti-
nation tag” on input terminal i, 0 <7 £ N — 1. Recall that
(Do, Dy, -+, Dy—y) is a permutation of (0,1, -, N — 1). The
data at input terminal { is to be routed to output terminal D;.
The switch settings are determined from the binary repre-
sentation of D;. If an N = 27 input/output Benes network is
being used, then there are 2n — | stages of switches whose
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settings need to be obtamed. Let the stages be numbered O
through 2n — 2. The state of a switch instage b or stage 2n ~
2 h 0% b = p— 1,18 determined by bit b of the destination
tag of its upper input (see Fig. 3} I bit b is O the switch is set
to state 0, otherwise to state 1. Fig. 4 lustrates the switch
settings obtained by this procedure for B(3). The permutation
being performed 15 a bit reversal (L., input 7 1s sent to output
terminal j, where the binary representation of j is the reverse
of that of /). The destination (ir: binary) for each switch input
15 given on the respective input line. As we shall see, all per-
mutations cannot be performed using this scheme.

The switch setting scheme just described is quite similar to
that used by Lawrie {4] to obtain the settings for his cmega
network. The number of switches and the delay in our self-
roufing network are both about twice the corresponding figures
in a “self-rovting” omega network. However, the number of
permutations realizable on our network (1.e., the cardinality
of the set F} is much larger than that of an omega network.
Furthermore, if we allow the added capability of disabling the
setf-setting logic in our network and set up the switches ex-
ternally, then the network can realize all NV permutations. The
same is not true of an omega network.

The problem of obtaining fast setup algorithms for the Benes
network has been studied previously. Mast notably, Lenfant
[S1 has proposed efficient set-up algorithms for five classes of
permutations. The setup scheme we have discussed is simpler
than each of the five different algorithms proposed by Lenfant
for his five classes. In addition, his five classes of permutations
are a small subset of our class F. In Section 11 we characterize
the class £ of permutations that can be performed on our
self-routing network.

The self-routing Benes network can be easily “simulated”
ont an SIMD machine with a fixed interconnection network,
Using this approach, we can perform any permutation in class
Fin Otlog V) steps on an N — PE CCC or PSC. Using the
same approach on an N'/2 X N2 MCC yields an efficient
O(N!/3) pertmutation algorithm for class F. The details of the
simutation approach are discussed in Section 1L

I THE CLASS F

Fig. 4 gives-an example permutation (i.e., bit reversal) that
can be performed on B(3) using the switch setting scheme
discussed in Section 1. Fig. 5 shows that the permutation D =
(1, 3, 2, 0) cannot be performed on A(2) using this switch
setting scheme,

Let #(n) denote the sct of permutations performable on
B(n) using the self-routing scheme of Section L. fa this section
we are interested in a characterization of the class F =
uF oo (n). By the permutation £ = (Dq, By, -+, Dy-;) we
shall mean a permutation in which input { is sent to output D;,
0 =i < N. Hence. D; is the destination tag of input /.

Given an integer i, let (i); denote bit j in the binary repre-
sentation of i, where (#)g is the least-significant bit. Thus, if
fisintherange [0,27 — 1], theni = (i), ({)—2 * {{)g. The
notation (i) ;«. where j 2 k, shall denote the integer with bi-
nary representation {(0);{¥);—, -~ (i}x. For example, if | =
10110, then (i)3, = 011 (=3}. Note that (i);,; = (i);.
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Let the switches ineach stage of B{n), N = 27_he numbered
Oto N/2 — 1, top to bottom. Recall that the stages are nun-
bered 0 to 2n — 2, left to right. Let I; be the destination tag
of the upper output of switch © in stage 0. And let £; be the
destination tag of the lower output of the same switch. Wote
that the destination tags of the upper and lower inputs to this
switch are Dy and Dy, respectively. The state of this switch
is determined by (D)o, that is, bit O of the destination tag of
the upper input of the switch (see Fig. 3). So, it follows that

[)7'[ i D?,' =

v =P =0 ()
Dapgy i (D)o =1
.l.)‘ﬁj '!\ 1) 72 = 1

i;gz{ 2 i ( 2)0_ (2
D4y if(Dy)o=0

for0O<i<N/2—1,
The following theorem tells us whether or not D ¢ Fin).
Theorem {: The permutation D = (Dg, - -+, Py}, where
N = 2%"and n = 2, 1 1in F(ﬂ) iff U = (([J{))Mﬁ[;]. Tt
(Unpp—thsvd and L= ((Lo)p11, - (Lyjp—s—1:1) are
both permutations in F(n - 1), U; and L; are a5 given by (1)
and {2).

Proof: Let the upper B{n — 1} subnetwork in our self-
routing B{n} network be denoted as B, (n — 1), (See Fig. 1.)
And let B;(n — 1) denote the lower B(n — 1) subnetwork. L.ct
us adopt the numbering 0,1, -+, N/2 — 1 for the inputs and
outputs of each of B,(n — 1) and B;(n — 1). [t should be easy
te see that {Lg, - - -, Unp—1) 15 the ordered set of destination
tags of the inputs to By (n ~ 1), and (Lg, -, L2} is the

. !
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ordered set of destination tags of the inputs to 8;(n — 1), Now
iF 838 a permutation and is in Fin — 1), then B (n — 1) will
perform the permutation {F on its /2 inputs. Simitarly i L
is a permutation and in F{n ~ 1), then Bilpn — 1) will route its
N /2 inputs to its N /2 outputs according to the permuiation
L. Thatis, input { of B, (n — 1} is routed to output (L),
of B,(n — 1), and input { of B;(n — 1} is rovted to ovtput
(fxi)nwl:l of B — 1)

Now, consider switch j in the last stage of B(#). (The
switches in the last stage are vumbered 0, 1.+ /2~ 1) The
upper and lower mputs to this switch, respectively, come ram
output j of B,(n —~ 1y and ovtput j of B{n — 1), Thus, the
destination tags D, and Iy of the two inputs 1o the jth switch
in the last stage are such that (D, ), = (I),—y, = j. Since
£ is a permutation, it follows that (D), )s = (Dp)g (as otherwise,
£, = D) and so one of D, and By equals 27 and the other 2§
+ 1. Betting switch j (of the last stage) aceording to {(D,)

correctly routes its two inputs to thewr final destinations.
" To prove the reverse, one may easily establish that if D
F{n), then L and I/ are permutations and L. ¢ F{n ~ ) and
Ue F{n— 1}, a3

Having established a necessary and sufficient condition for
a permutation to be realizable by our scif-routing Benes net-
work, we proceed to show thal most of the permutation classes
that have been studied in the literature are members of F.

First, consider the class BPC of bit-permute-complement
permutations studied by Nassimi and Sahni [6]. A permuta-
ton in BPC(n) is specified by providing an » tuple 4 = (4,— 4,
o, Ag), where a1 = (14,11, +, | Ag|) is a permutation of
{n—1,n—12, - 0). The vector 4 specifies a permutation on
N = 2% inputs. The destination D; of input i is obtained as
foliows:

(i if4,z0
1= (i), if 4; <0.
In A we distinguish between +0 and —0. We use ~0 < 0. In
words, the destination address [J; for input § is obtained from
i by first complementing a subset of bits in the binary repre-
© seniation of / and then permuting the bits. The vector (4,- ),
-+ sign (4g)) specifies which bits of { are complemented: Bit
Jjof i is complemented iff 4; < 0. Then the vector < (] A4,-:|.
-+ -, ]Ao|) says how to permute the bits: The bit from position
J goes to position | 4;|. Thus. bit j of 7, or its complement, be-
comes bit | 4;| of the destination address D;,0 </ < N — 1.
For example, consider 4 = (0, —1, —2). The input i = (i);-
{i)1(i)o has destination D; = (D }2(D; h(Dide = (ol (2
Thus,Do=6,D1 m:2,102=4,D3=0,D4= 7,[)5 = 3,D6=
5, [)7 = 1.

The class BPC{n), N = 2%, only contains N{log N)! of the
possibie N! permutations. Nevertheless, many of the permu-
tations encountered in paralief algorithms are inciuded in this
ciass. For exampile, Lenfant [5] identifies five families of
“frequently used bijections” (FUB). Three of his FUB families
{namely, ai?, 50~} are included in our BPC(n). Table
I gives the A4 vectors corresponding to several of the more
popular permutations in BPC (#). Note that the bit reversal
of Fig. 4 is in BPC(3).

It should be pointed out that our self-routing network “sees”

(D)) = (3)

335

TABLE |
EXAMPLE PERMUTATIONS 1N BPC(n)

Fermutation Veotor Representarion A
Matrix Transpese fa/i-l, PRI B
Rit Rewversal G, L, 2, o, n-1]
Weotor Revarsal f-{n-1), ~(n-2), ..., -0}
Periect Shuffle {0, n—i, n-2, ..., 1]
Unshuffie in-2, n-3, ..., 0, n-1]
shuffled Row Major {n-i, o/2-1, n-2, nf2-3, ..., afl, 0}
Bir Shuffie [n-1, n=3, ., 1, n=2, n=d, ..., D}

the destination tags £ = (Dg, Dy, - -+, Dw_y). The fact that
the permutation £ as a member of BPC class has a more
compact representation A = (A,_;, -, Ap) 15 not “known”
to the network. Theorem 2 shows that BPCin) = F(n). Before
proceeding to the proof of this result, we need the result of the
next Jemma.

Lemma I: Let A = (A, - 4g) ¢ BPC(n). n > §, spe-
cify the permutation /3 = (Dy, Dy, - . Do (). where N = 20
[see (3}]. Assume that | Ag| 7 0, hence, | 44| = 0 for some k
€ [L.n— 1j. {The existence of k follows from the fact that
(PAo). |4y [ 4=y is 2 permutation of (0, 1, n — 1))
Then, F1 and F2 as defined below are permutations in BPC(n
- 1)

Y FL= (00 O - - Onamy)

where
_D2dpeyn 020 = 0L (200 = (20)]
(Doip ) (20 = TLIf (20 + 1y = (27 + e}
2y F2=(Ro, Ry, Ryp)
where

- f(le)fl—i:f if (2").( =1 l_‘f(zj);( 7 (2!)0}

’ l(DZi"H}n-—\:i 2y =020+ 1) = (27 + 1))
Note that following each condition an equivaient condition is
given inside brackets. For example, on the last line it is easy
ta see that the condition (27, = 0is equivalent to the condition
(27 + Dy = (27 + 1o, (Recall that k = 0).

Proof! Let us represent the permutation D = (Dg, Dy, - - -
Dy—yyasaset S of ordered pairs (i, D):
S={i, D0 i< N—- 1L
Consider the two subsets (71 and G2 of S defined below:
Gl =, Dy}, Dyy ¢ Sand () = (i)l
G2 =, D) | (i, i) € S and (i) 5 (i)}

Note that |G| = |G2] = N/2and G1 U G2 = S, Also ob-
serve that forany/,0 i < N/2— 1,oneof (2i, D) and (2
+ 1, Doiy) isin G'1, while the other is in G2, Next, define H i
and H2 as below:

Hl = {((-’l)n—-l:ia (Di)n.wl:3>,<js D;) & GE}
Hl= {((i)i'l"llﬁ?(Di'))i'*"l:E>|<[5Di) S G2}

It is easy to see that H1 and H2, respectively, correspond to
F1 and F2 as defined in the statement of the femma. That is,
H1=0,0Q0),  (N/2=1,0npn-1)}and H2 = {0, Ry),
AN/~ 1, Ry bl

O

)
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Toshow that /1 represents a permutation in BPC(s ~ 13,
let us first examine G 1. Let (i, D;) & G1. Recall that | Ak] =
O.ke [tin=1] Let|Ag] = r.r e [i, n~ 1] From (3} and
the fact that (i)g = (3. it follows that

(f)() l] :’Ik b +0
Diyg = e
(Prdo [1 — (o il A = =0
o= {0 e
b — (D if Ag = —r.

The remaining bits of D; may suill be computed from (3. In
words, bit 0 of 1J; is obtained from bit O of /. Bits 1,2, -, n —
Lof Dy are obtained from bits 1,2, n — 1 of i by comple-
menting a subset of the latter bits and then permuting
them.

From these results for (1 and the fact that for any 7 exactly
one of (24, Dy) or (27 + 1. Doy ) is in G 1, it easily follows
that /1 is a permutation in BPC(xn — 1) class. Mote precisely,
let

The permutation H1 (or F'1) is given by the vector
B = (Bp-2r -, By)

where B; = LMAG (4,4} forj = k — 1,and 8; ., = LMAG
(Ao). '

Similarly, it can be shown that H2 (or F2) is a permutation
and in BPC{rn — 1}. This permutation is defined by the
vector

= (Crl“‘“.?a T CO)

where (; = B;forj = k— 1,and Oy = —Bi_,. [}

Theorem 2: BPC{n) « F(n) foralln, n = 1.

Proof: The proof is by induction on n. Clearly, BPC(1)
= F(1}. Assume that BPC(m) ¢ F{m) forallm, | <m < n.
We shali show that BPC(n) « F{n). This will establish the
theorem. Let 4 = (A4, |, -, Ap) specify a permutation [ =
(Do, -+, Dy—y) in BPC(n). We consider two cases: 1) | Ao
= 0,and 2) | 4¢] = 0.

Case 1: [ Ap} = 0—1f 4o = 0then{D;}g = (). 0 < i <N,
and all switches in stage 0 are in state Q. Using the notation of
Theorem 1, U; = Do and Li=Dyy, 050 < N/2 Hence, the
permutations U and L to be performned by the B{n — 1) net-
works are given by 4" = (4, - -, Ay), where A= LMAG
(Aj+1) and LMAG is defined in (4). Clearly, 4’ defines a
permutation in BPC(n — 1). From the induction hypothesis,
BPC(n -~ 1) € F(n — 1) and so from Theorem | it follows that
D e F(n).

IFAg=—0then (D)o =1— (e, 027 <N, and all
switches in stage 0 are in state 1. The permutations U/ and L
are again given by A” which defines a permutation in BCP(xn
—1}. 80, D e F(n).

Case 2: | Ag] 5= 0-—Let k be as defined in Lemma 1. We
consider two possibilities: 4, = 0 and A, = —0.

a) Ax =0 Inthis case (Dy)o = (2i)4,0<i < N/Z—1,
Recall that the state of switch i instage 0,0 </ < Njz—1,
18 determined by (D)o, Hence, the state of this switch = (2.
The destination tags of the upper and lower cutputs of this
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switch are I and L,. So, from the definitions of O, and &, in
Lemma I wesee that (£}, = @, and (L), = R0 <
FEN/2— 1 Therefore, I = Fl ¢ BPC(n ~ 1) and £ =
Fle BPC(n ~ 1). From the induction hypothesis and Theorem
t it follows that e F(n),

By Ap = -0 inthiscase (Dyyg =1 —(24), 0 <f < Nj2
= 1. S0, the state of switch i in stage O = | — (71);. Now we

see that (!,:’r_.')”_..p[ = R, and (f.;),,._ it = (2, 0=i< N/'l - 1.
Se, U= Fle BPCn — Dand £ = F1 ¢ BPC(P; - 1).
Therefore, £ e Fla). [

We next turn our atfention to the ¢lass of omega (Q) and
inverse omega (18} permutations. Lawrie [4] has defined the
class of omega permutations to consist of exactly those per-
mutations realizable by his omega network. A permutation D
= (Do, D Puyo) N o= 29 0san O n) permuatation iff for
everyiand /0 £/ <N 0 << Nandi » j, the following
15 true:

(Didn— 16 (Dprio # (Dihwr Ul 1 £ b Zn— 1.

D is an 12(n) permutation [4] iff for every i and j,0 <[ < N,
0 =/ <N andi # j, the following is true:

(D16 (DYp-10 5 Ghamtn (Ddheyon | b < |,

Inverse omega permutations are realizable using an omega
network backwards. Lawrie [4] lists several specific omega
permutations that are useful in matrix computations. These
correspond to fetching array elements by rows, columns, for-
ward diagonals, backward diagonals, etc. Some interesting
permuiations contained in 1Q(n) are:

13 cyclic shift: Here, Dy = {(i+ kY mod N,0 <i < N and
k 15 a fixed constant,

2} p-ordering: Dy = (p- i) mod N,0 < i <N, where p is
an odd integer.

3) inverse p-order: This just unscrambles a p-ordering and
is done by a g-ordering, where (p - q) mod N = 1.

4) p-ordering and cyclic shift: D; = (p- i+ k) mod N, 0
=i < N, where pis an odd integer and & an arbitrary in-
teger. ‘

5} cyclic shifts within segments: Givenr & [1,n — 1] and
an arbitrary integer &, this permutation maps i to I, 0 <7 <
2% - 1, where (D )m1r = (i )p—1. and (D) rerio=(({}r—10 -
+ k) mod 27. That is, a cyclic shift of & is performed within
each scgment of size 27,

6) conditional exchange: Given k & [1, n — 1], this per-
mutation is defined as (D;),— 1., = (I}y1.1 and (D) = (o
@ (/). where @ is EXCLUSIVE-OR. In words, the elements of
each pair (24, 2/ + 1) are exchanged iff bit k of 2/ is = 1,

The set of permutations defined in 4) and 5) above are
Lenfant’s FUB families A4 and (", respectively [5]. The
“conditional exchange™ corresponds to Lenfant’s n{. (See
Table 1 of [5].) 1t is interesting to note that all of the above
1{(n) permutations are also members of ((n).

One may easily verify that there exist Q(n) and 1£(n) per-
mutations that are not in BPC(n}. For example, cyclic shift
is not in BPC{n) unless, of course, k mod N = 0. Also, BPC{n)
contains permutations not in Q(n) nor IQ(n). More specifi-
cally, every BPC permutation specified by 4 = (4,1, -, Ag).
where | A4;| = j for at least one j is in neither &(n) nor 1Q(n).
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We leave it to the reader to confirm these noncontaimment
staternents. The reader is referred to Lawrie 4] and Oreutt
E8] for further examples and properties of 42 and 18 permu-
tattons. Gur next theorem shows that sy o Fla), This re-
sult is not surprising as the first i stages of Bin) correspond
to an inverse amega network except for some rearrangement
of switches. Similarly, the last # stages of B{n) correspond to
an emega network.
Theorem 3: Whny = Flul.n 2 1.

Froof: The proof 13 by induction on n. When s = {14 1)

= F(1}. Assume that 0m)y ¢ Flen, | < m < Let D= (I,

£im). inpuis 2f and 2i + 1 are connected to switch /. Since
{28y, =24+ 1y,o g and De 1020n), it follows that {7 )0
s {Daip o Let £ and £, be as in Theorem 1. From the
switch setting scheme, it follows that (04 }g = Gand (L, Je = 1,
0 <7 < N/2 Consequently, U and L both deline permutations.
it is now an easy matier tosec that Ue 19(n — 1hand Le 18n
- 1). n|

Since we have shown thay BPCln) ¢ F(n) and MMy <
F(n), we conclude thag all of Lenfant’s five families of “fre-
guently used bijections™ are included i F{n). This is because,
as commenied earlier, three of the FUB families are in BPC
and the remaining {wo in 18

Unforwunately, not all (#) permutations are in F(n). For
example. £ = (1,3, 2,0y 02, but D ¢ F(2) as illustrated
in Fig. 5. However, as mentioned earlier, many () permu-
tations of interest (e.g., cvelic shift and p-ordering) are also
in 1}(n). heance in F(a). By providing our self-routing network
with some additional simpile logic, the network can handle all
() permutations as well. Since the last a2 stages of Bin)
correspond 1o an 4 network, it is easy o see that an ()
permutation can be realized on our network if the switches in
stages 0 through r ~ 2 are all placed in state O, while the re-
maining # stages obey the self-routing scheme described carlier
(Fig. 3). One way to implement this on our network s to pro-
vide an additional “omega’™ bit with each “destination tag.”
{This bit will be =1 iff we are performing an £ permutation.}
Each switch in stages 0 through r ~ 2 places itself in state O
if it finds the “omega™ bit = |, otherwise the swich determines
its state as before {i.c., the schemé of Fig. 3). The logic of
switches in the tast n stages of our self-routing network s not
altered.

in the remainder of this section we further characterize the
class of F{n) permutations by proving several composite
properties, Our next theorem shows that if we partition 27
elements into blocks of size 27 (of not necessarily consccutive
elements) and permute the clements within cach block ac-
cording to some F permutations, then the composite mapping
is also an F permutation.

Let J be any subset of fr— 1, -+ Odand et N = 27 f can
be used to partition the numbers 0, 1, -, N — | into equiva-
lence classes or blocks with the property that 7 and j are in the
same class or block ff (/) = (f)} for ali ke J. For example,
ifn=23andJ ={l}thentheset{0, 1, -, 7}is partitioned into
the two blocks {0, 1. 4, 5iand {2, 3, 6, 7}, This partitioning into
blocks will be referred to as J-partitioning. Note that if |J]
= p — r, then each block is of size 2.
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Theorem 4 Let the N o= 27 aumbers 0.1, -- - & — L be J-
partitioned according tosome J.J o fn— 1 Gland let [/]
=y — r, bet the A-inputs and N-outputs of Bla) be parti-
tioned into blocks in this way. Let &, ¢ Fir) be a perinutation
mapping the 27 inputs in the ith partition onte the 27 cutputs
in the same partition. This requires reindexing the 27 inputs
and 27 outputs in this block 0. 1. -+, 27 — 1. The N-input
permutation & defined by G, G- G wherep = 2777 —
1isin Fin).

Prooj: We shall once again use induction on . When »
= { iitsclear that Ge A1) So, assume Ge Fin)o b <= <
When n = m, consider any J with |/ = m —r. Let G, e Fir).

and Y0 & F

Iy O g T thos case if 7 and f e two inputs {otlputs) in
the same J-paration of Bim), then (g = (Do = (D)o = (D).
Conseguently, all switches in stage O of B(s) arc in state 0 and
all input blocks corresponding 1o even (odd) input indices get
switched to the upper (lower) Bém — by netwark. fapat 27 of
B poes to input i of B, (m — 1) while input 2i + 1 of B(a)
goes o put 7 of Biuw — 1), 0 7 £ 2071 =0 Defineg J' =
YiFH 1e (J —10D1 Let the pats and outpuss of cack of Blm
~ 1) networks be J-partitoned. Inputs in the same J-partition
of B{m} are in the same J partivion of Blm — 1), UEL) 8
made up ol the G5 corresponding to blocks in the J-partition
with even (odd) indices. Since each &2 F(r), it follows from
the induction hypothesis that Us F(m — 1yand L & Fm —
Iy, From Theorem | it follows that Ge F(m).

2} 0 ¢ L Now both inputs to any switch in stage O of B(n1)

‘azre from the same 27 block under J-partitioning. Conse-

guently, an input from block 7 gets routed to the upper {ower)
Blm — 1} petwork iff the corresponding input of a B(r) net-
work will be routed to the upper {lower) B(r — 1) network
when € is performed on B(r). Let J' = {f]j + te J] If two
inputs are in the same J'-partition of the upper (lower) B(m
— 1} network. ther they must alse be tn the same J-partition
of B(my. Let L7 and L be as in Theorem | Let LY, L7 corre-
spond to U and L of Theorem 1 when the permutation defined
by ;s performed on B(r), 0 £ 1 < p. It {ollows from the
previous discussion that U is made up of subpermutations
carresponding to £/, 0 <7 < p,and L is made up of subper-
mutations corresponding to L', 0 =7 £ p. Each &/ and L/
defines o permutation mapping inputs in one J'-partition. Also,
Vic Flr — 1yand L'e F(r — 1), 0 =1 < p. From the induction
hypothesis it foliows that Ug F(m — 1) and Le Fim — 1).
Now {rom Theorem 1, it follows that Ge Fim). £

Il we interpret the N inputs to B(a) as representing the NV
elements in the NV/2 % NY2 array 4 (in row-major order),
then Theorem 4 shows that the following array mappings used
by Cannon [1] and Dekel, Nassimi, and Sahni 2] are in F?

(3} A, jY— AU (i + ) mod N'/2)

(4) A(G,jy = A + /) mod N2, j)

(5} AU J) — AU i & )

(6) AU, ) — AU ® j, )

{7) 4, j)— AUX, j) (i® is obtained by reversing the bi-
nary representation of f),

Theorem 4 may be generalized as in the next two theo-
rems.
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Theorem S:Let Jcfn— 1, Oland |J| =n — r. Let
be a permutation that maps inputs in the ith block of the J-
partition to outputs in block B, of the J-partition using the
permutation G, 0 <7 <27 G e F(r), 0 =i <277 and
B=(Bo. By, - - ByleFln—~r),p=2""7— 1 then ¢ &
F{n)

Proof: Simikar to that of Theorem 4. ]

Theorem 5 shows that permutations in which rows of a
matrix get permuted and mapped onto different rows using G5
and B satisfying the theorem are in F(n). Theorem 4 may also
be generalized to include permutations that can be defined for
k-dimensional arrays. .

Definition: Let J,. Jy, -+ J; be disjoint subsets of fr ~ 1,
0L The Jy|Ja] - | Je-partition of N = 27 elements is ob-
tatned by first obtaining the Jy-partition. Each block in the
Jy-partition is then partitioned using J>. Each block is next
partitioned using J; and so on. This partitioning is best de-
scribed by a trec in which blocks at level [ are partitioned using
A We assume that the root 1 at level | and represents a block
condaining all 27 elements.

Theorem 6: Let Sy, -y be disjoint subsets of ln — 1.+«
Of such that wiJ, ={n — 1, --- 0} Consider the resulting
Jil 2o [ -partitioning of [0, 1, -+ . & =~ 1], Define a per-
mutation GG of N elements as follows:
for i: = &k down to | do

Let the children of any block atfevel i be By, 810+, By,

where p = 27and |J;| = r. The clements of B, are mapped

anto elements of B, without changing their relative order,
0= 7 <p p={(0), d{1). -, p{p ~ F)}isany permutation

in F{r).
end
Then, Ge F(n}.

Proof: Follows from Theorem 5 by a simple induction on
k. ]

As an example of ¢ permutation satisfying the requirements
of Theorem 6, consider the three-dimensional array 4(0:27
— 25— 1,0:2' - 1). Let the elements be indexed in row-
majororderandletn =r+s+1 LetJy =liln—r—s<i <
n—r—tJo={il0gi<n—r—s— 1l and i = |iln ~r
=i = n— 1. Consider the J;|J:[J;-partition of the 27 ele-
ments in A. From Theorem 6 it follows that the mapping 4 (i,
S kY — A, §, k"), where

i"=(+j*kymod2r

4

J =(p=j)ymod 2%, pisanodd constant

and
k'=j®k
isin F(n).
We conclude this section with the remark that F is not closed
under product. To see this, consider the permutations 4 = (3,

0,1,2)and B=(0.1.3,2). A0 B =(2,0,1,3). de F(2},
Be F(2),and A O B¢ F(2).

HE. PERMUTATION ALGORITHMS FOR A CCC, PSC,
AND MCC

In this section we are concerned with permuting data on an
SIMD computer with {imited interconnection. In particular,
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we consider an N-PE CCC, PSC,and MCC, Let (R, B
bein PE(D),. 0 =7 =N — 1, where R(/) is the datg and D{)
s its destination address. D = (D{0), D(1).- - D(N = 1)) is
a permutation of (0, 1, -+ N — 1}, The data R{i} are to be
routed from PE(Y 1o PEDUGN, 0 €7 < N~ |, Assume N =
i

Thompson 9] has observed that a permutation can be
performed on a CCC, PSC, or MCC by “simulating™ a Benes
network on these machines. Assuming that the switch settings
of the Benes network are known for the desired permutation,
then the permutation ¢an be performed in O(log V) routing
steps on 2 CCC or PSC, and in O(V/?) routing steps on an
MCC [9]. However, given the destination-address represen-
tation of an arbitrary permutation £ = (D{0).- -+ D{N — 1),
extensive “preprocessing” is needed to determine the switch
settings of the Benes network before the “simulation™ can be
carried out. For example, consider an N-PE CCC or PSC
(with destination address DY in PE(/), 0 <7 < ¥ — 1) The
best known “preprocessing™ algorithm (i.e., the algartthm to
determine the switch settings of a Benes network for permu-
tation D} requires Olog® ) time on an N-PE CCC or PSC
[71. So, including the preprocessing time, the total time needed
to perform the permutation becomes OClog? N). For an MCC,
using the (N2 preprocessing algorithm of [7]. the total
permtation time is (VY)Y but with a very large constant of
proportionality.

Another method for performing a permutation D is to sort
the records (R(/}. DU}y using D(/) as the sort key, Batcher’s
bitonic sort algorithim [11] vields a permuatation algorithm with
time compiexity O{log® N) for a CCC or PSC [{5}and O(N'/7)
for an MCC [i4], {16]. These arc asymptotically best known
algorithms for performing an arbitrary permutation on these
machines,

For the special class of F(n) permuiations, we can “simu-
late” our self-routing Benes network without requiring any
preprocessing. As a result, any F{n) permutation can be re-
afized in Olog Vj steps on a CCC ar PSC. For an MCC the
resulting permutation algorithm requires O{NV /7 steps {with
a smaller constant of proportionality than the MCC algorithms
mentioned in the previous two paragraphs). The “simulation”™
of the seif-routing network is very straightforward, The re-
mainder of thig section gives the details of this simulation.

In specifying the algorithms we shall use “<-" to denote an
assignment requiring data movement between two adjacent
(i.e., directly connected) PE’s. We shall use 19 to denote the
number whose binary representation differs from that of 7 only
in bit 5. PE sclectivity is specified by providing an enable mask.
Thus, the instructon

R(i¥y < R(). (1, = 0)
requires records 1o be transferred from PE’s withbith =0 to
PE’s with bit 6 = 1.

The permutation algorithm for a CCC is simply the fol-
lowing loop:

forh =0,1,-n—2,n—1,n—2,-0do

(RGP, DN ) < (RGUY, D(i}), (1) = 0,
and (D(i))p = 1)

end.
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The atgorithm is illustrated in Fig. 6 for bit-reversal per-
mutation. Note that the permutation is the same as that per-
formed in Fig. 4. The column D(i)* in the figure shows the
destination addsess in each PE after the kth iteration of the
loop. An exchange between 4 pair of PE's is controiled by the
underlined bit in the destination address. For example, during
the first iteration (1.e., b = 0} an exchange is made between
PE(6) and PE(7) because (HD(6))y = 1. During the iteration
b = 2, no exchange is made between PE(0) and PE(4) since
(0{0)): = 0ran exchange is made between PE(1) and PE(5)
since (D(1))2 = 1, and so on.

As for the number of routing steps in the CCC algorithm,
if both R and D fit into one word and the interchange {++) can
be performed with one unit-rouie, then the number of unit-
routes needed ts 2n — 1 = 2 log ¥ — 1. If the interchange needs
two unit-routes, then 4 log NV — 2 unit-routes are needed to
perform any permutation in F(n}. ! permutations can be
performed by skipping the first 1 — 1 iterations of the above
loop. For 18(n) we may skip the last n — | iterations. For a
BPC permutation given by the vector A = (Ay.q, -+, Ag). if
A; = j then the iteration(s) b = j may be skipped. This is be-
cause (D{7)); = (i);, hence, no routing across “dimension” j
of the cube is needed. For a BPC permutation the number of
routing steps used by the algorithm is within a factor of two
from the optimal. See Nassimi and Sahni {12] for an optimal
algorithm to perform BPC permutations on a CCC.

We next give the algorithm for realizing F(#) permutations
ona PSC. Let EXCHANGE (R(1), D()), SHUFFLE (R(i),
D))y, and UNSHUFFLE (R}, D)) route (R{i}. D(Y)
along the corresponding connection. Note that EXCHANGE
interchanges {R{1), D(i)) and (RO, D9}, The above
loop is simulated by the following code:

forb:=0ton — 2do
EXCHANGE (R{!), D{1)), (io = 0 and (D(1))}, = 1)
UNSHUFFLE (R{), D{i))
end
EXCHANGE {R(i}, D{i}), (i = O and (D{i))p—; = 1)
for b := n — 2 down to 0 do
SHUFFLE (R(), D))
EXCHANGE (R}, D()), (lo=0and (D(i})p = 1)

end.

The number of unit-routes needed is 4 log N — 3. To per~
form an £ permutation, the first for loop should be replaced
by a shuffle on (R{J), D(i}).

The permutation algorithm for an NV/2 X N/2 MCC is
obtained directly from the CCC algorithm. A pair of PE’s that
differ in bit & of their row-major indices have a horizontal
distance of 27 if b < log N'/? and have a vertical distance of
25=1if b = log N2 (j = log NV/2). An interchange between
elements 2% apart requires 2%** unit-routes (2¥ in each di-
rection). 5o, all permutations in F(#) can be performed with
7 N1/2 — 8 unit-routes. For permutations in BPC(#n) the re-

1 neey® i)t nen? besy? oy (1)’
0 000 500 000 500 000 00
1 100 ] 100 4 100 G0L T a0l ] ool
2 010 010 oo 010 - 01 010
3 (10 ] 110 iio QLE =l 011 ] oli
4 00_1_:! 101+ 101 1007 101 100
5 101 801 - o1 100 4 mcs] 101
& 011 111 11 1334 ST 110
T lil] 011 3 0li 110 — 110] 111
b= O 1 z i o
Fig. 6. Bit-reversal permutation om a CCC with N = § PR

sulting algorithm is optimal to within a factor of four, Nassimi
and Sahni [6] present an optimal algorithm to perform BPC
permutations on an MCC.

Finally, it should be noted that the destination tags (D(0),
coo DUN — 1)) may be efficiently computed from a more
compact representation (if there is any). For example, a
BPC(n) permutation may be represented by a vector A =
{Au—\, ", Ag). Given the A vector {log N words) ia the in-
struction stream, and assuming that an appropriate set of
simple instructions is available, it is easy Lo see that each PE
can compute its own destination tag in O{log N} steps. (This
holds independent of the interconnection scheme as the com-

- putation does not involve any PE-to-PE communication.)

HMence, the total number of steps needed to perform a BPC
permutation from its A-vector representation is stili Otog N)
ona CCC or PSC, and O{(NY/?) on an MCC. As another ex-
ample, consider “p-ordering and cyelic shift” permutation

Diiy=(p-i+k)mod N,

It should be obvious that, given the constants p and k in the
instruction stream, the destination tags can be computed in
O{1) steps.

0=i=N~- 1|

IV, CONCLUSIONS

We have presented a seif-routing Benes network. A desti-
nation tag (log /V bits) is passed through the network along
with each input. A very simple logic is required in each switch.
This logic determines the binary state of the switch from a
particutar bit of the destination tag of its upper input. The
resulting network is capable of realizing a rich class of per-
mutations, F(xn), N = 27, in O(log NV} time. We showed that
the class F(n) includes Lawrie’s 1£2(n) permutations, Nassimi
and Szhni’s BPC(#n) permutations, and consequently Leafant’s
F1JB famities. Any () permutation can also be realized on
this network if the switches in the first n — 1 stages are
“forced” into state 0. We further demonstrated the richness
of F{n) class by proving several composite properties for F(#)
permufations. Finally, in Section 111 we showed that by
“simulating” the self-routing network, any F(x} permutation
can be performed in G(log N) steps on an N-PE CCC or PSC
and in O(V'/2) steps on an N1/2 X N'/2 MCC.

We believe that the self-routing Benes network promises an
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cffective interconnection netwark for SIMD computers. We
propose an SIM D computer with two interconnection networks
as follows,

1) A petwork E{n) providing dircct connections between
PE's, hence capable of performing some permutations in 0(1)
time. This may be, for example, the connection scheme of a
PSC or MCC.

2) The self-routing Benes network B(n) with O(lot VY
delay. PE(/) is connected to input 7 and output i of B(n), 0 <
I SN -1,

Then some permutations are performed more efficiently
through E(n). while some others via B(n).

For the case when the first network £(n) is the connection
scheme of a PSC. the utility of the second network B(n) de-
serves o comiment. Realizing an F(n) permutation through
B(n} requires O(log N) gate delays. From the results of Scetion
HT we know that the same permutation can be performed via
E{n) in{(log N routing steps. However, each routing step
involves broadcasting an instruction to all PE’s, and gating
data from register of one PE to that of another PE. Therefore,
ruch less time is required to perform the permutation through
En).

Finally, we would fike to point out that by providing registers
between the stages of B(n), the network may operate in
pipelined mode. That is, a new N-element vector may cnter
the network every clock-period. Hence. when permuting a
sequence of vectors (not necessarily according to the same
permutation}, the network will output the first permuted vector
after O(log NV} delay, while each subsequent permuted vector
will emerge after unit delay. Of course, the network may still
operate in nonpipelined mode with appropriate logic to bypass
the registers. This enables us to rapidly permute a single vector
as well.
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