Data Structures, Algorithms, & Applications in Java
Copyright 1999 Sartaj Sahni

CHAPTER 53

RECURRENCE EQUATIONS

This material is essentially Chapter 7 of the book Concepts in Discrete Mathematics
by Sartaj Sahni, Camelot Publishing, 1985. It isreproduced here with permission of
the publisher.

53.1 INTRODUCTION

The computing time of an algorithm (particularly a recursive algorithm) is often
easily expressed recursively (i.e, in terms of itself). This was the case, for
instance, for the function r Sum (Program 1.26). We had determined that
t,ajm(n?N = C+t,gmn-1y Where c is some constant. The worst-case computing
time, t{4(", of the merge sort method is easily seen to satisfy the inequality:

n=1

w C
W)= | grnr2yetin/2lyrean 1 &2
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We expect the recurrence (53.1) to be difficult to solve because of the pres-
ence of the ceiling and floor functlons If we attempt to solve (53.1) only for
values of n that are a power of 2 (n=2%), then (53.1) becomes:

t(n) < [ n=1 (53.2)

t(n/2)+c4n n>1and a power of 2

If the inequality of (53.2) is converted to the equality:

tm(n) = [ o n=1 (53.3)

2tpm(n/2)+c4n n>1 and a power of 2

then tM(n) is an upper bound on t)J(n). So, if tyy(n) = f (n) then tf%(n) = O(f (n)).
Since it is also the case that there exist constants ¢ and cg such that

() > [ n=1

2t}1(n/2)+cgn n>1 and n a power of 2

it follows that t{3(n) = Q(f (n)). Hence, tf1(n) = ©(f (n)).

The entire discussion concerning the worst case complexity t{y can be
repeated with respect to the best case compIeX|ty (i. e the minimum time spent
on any input of n numbers). The conclusion is that t§(n) = ©(f (n)). Since both
the best and worst case complexities are O(f (n)), it follows that t§;(n) = O(f (n))
and ty(n) = ©(f (n)).

when analyzing quick sort, we see that the partitioning into left (L) and
right (R) segments can be done in @(n) time. So,

n<i

Cq
to(n) = [C2+tQ(|L N+to(IR]) n>1 (53.4)

In (53.4), Q has been used as an abbreviation for Qui ckSort . |L | can be any
number in the range 0 to n—1. For random instances, | L | equalseach of O, 1, ...,
n-1 with equal probability. So, for the average complexity of Qui ckSort ,
we obtain:

n-1 (53.5)

czn+F(Z[tQ(l)+tQ(n -i))] n>1
i=1

[cl n<l

2n- -1
c2n+—ZtQ(|) n>1
nl =1

3 [cl n<l
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The worst case for Qui ckSort iswhen one of L and R is empty at all
levels of the recursion. In this case, we obtain the recurrence;

Cq n<l

to(n) = [c2n+t"(§(n—1) n>1 (53.6)

The best case for Qui ckSor iswhen |L | = | R | at al levels of the recursion.
The recurrence for thiscase is:

[ €1 nsl (53.7)

R )+n-1-[12) n>1

con+td([

A function g (n) such that tg(n) = O(g(n)) for n a power of 2 can be obtained by
solving the recurrence:

Cq1 n<l

CoNn+2to(n/2) n>1and a power of 2 (53.8)

g(n) = to(n) = [

For sel ect (Program 19.8), theworst caseiswhenk=1and |[R|=0at
al levels of the recursion. So, the worst-case computing time of sel ect is
given by the recurrence:

et (N) = [Cl n=1 (53.9)

Con+tdyet(N-1) N>1

To obtain the recurrence for the average computing time of sel ect , we
need to introduce some new functions. First, we shall assume that all the ee-
ments are distinct. Let tX(n) be the average time to find the kth smallest element.
This average is taken over al n! permutations of the elements. The average
computing time of sel ect isgiven by:

) = - 2 O)
=1

Define R(n) to be the largest t“(n). That is,

R(n) = ng]{tk(n)}
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It iseasy to see that t3ye(N) < R(N).

With these definitions in mind, let us proceed to analyze sel ect for the
case when all elements are distinct. For random input, there is an equal probabil -
itythat |L | =0, 1,2, ..., n—1. Thisleads to the following inequality for t“(n):

C n=1
on+{ 3 -1+ 3 I n=2

k<j<n 1<j<k

tk(n) <

From this, we conclude that:

R(n) <cn + %ml?x{ s R(G-)+ T R(—))},n=2

k<j=n 1<j<k
1 n-1 n-1 )
=cn+—max{ > R(i)+ > R(i)},n=2
n k n—k+1

Since Risan increasing function of n,

c n=1
R(n) < 2-5C2 . n=2 (53.10)
cn+— > R(i) neven and n>2

i=n/2

2 n-1 )
cn+— > R() dse
Ni=(n+12
If R(n) = ©(f (n)), then it follows from our earlier observation
(t&ect (N) £ R(N)) that t&yeet(n) = O(f (n)). We shall later see that R(n) = ©(n).
This together with the observation t3ye(N) = Q(n) leads to the conclusion that
tsect(N) = O(N).
Even though bi nar ySear ch (Program 3.1) is not a recursive algorithm,
its worst-case time complexity is best described by arecurrence relation. It is not
too difficult to see that the following recurrence is correct:

c n=1
Bm=1" (53.11)

co+t§([51) n>1
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When nisapower of 2, (53.11) simplifiesto:

Cq n=1

W —
t8(n) = Cco+t8(n/2) n>1 and a power of 2 (53.12)

Hopefully, these examples have convinced you that recurrence relations
are indeed useful in describing the time complexity of both iterative and recur-
sive agorithms. In each of the above examples, the recurrence relations them-
selves were easily obtained. Having obtained the recurrence, we must now solve
it to determine the asymptotic growth rate of the time complexity. We shall con-
sider four methods of solving recurrence relations:

(a) substitution

(b) induction

(c) characteristic roots
(d) generating functions.

53.2 SUBSTITUTION

In the substitution method of solving arecurrence relation for f(n), the recurrence
for f (n) is repeatedly used to eliminate al occurrences of f () from the right
hand side of the recurrence. Once this has been done, the terms in the right hand
side are collected together to obtain a compact expression for f(n). The
mechanics of this method are best described by means of examples.

Example 53.1 Consider the recurrence:

_|cy n=0
tn) = co+t(n-1) n=1 (53.13)

When ¢, = ¢, = 2, t(n) is the recurrence for the step count of r Sum (Program
1.9). If n>2thent(n-1) = co+t(n-2). If n> 3 then t(n-2) = c,+t(n-3) etc.
These equalities are immediate consequences of (53.13) and are used in the fol-
lowing derivation of a nonrecursive expression for t(n):

t(n) = co+t(n-1)
=Co+CotHt(N-2)

= Co+Co+CotHt(N-3)
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= con+t(0)
=c,n+cq, N=0

So, we see that t(n) = c,n+cq, n= 0. From this, we obtain t,q,(N) = 2n+2. O

Example 53.2 Recurrence (53.12) may be solved by substitution. Observe that
(53.12) defines tg(n) only for values of n that are a power of 2. If nisnot a power
of 2, then the value of t(n) is not defined by (53.12). For example, if n =5 then
tg(2.5) appears on the right hand side of (53.12). But tf is a function whose

domain is the natural numbers. If n = 6, then from (53.12) we obtain (t is used as
an abbreviation for tg):

1(6) = c,+(3)
=Cy+CoH(1.5)

But, t(1.5) is undefined. When n is a power of 2, t(n) is aways defined (i.e.,
using the recurrence 7.12). t(n) is of course defined for al nON-{1} when
(53.11) is used. Assuming n is a power of 2 (say, n = 2), the substitution method
leads to the following series of equalities:

t(n)=c, +t(n/2)
=Cyo+ Cy+t(n/d)

=Cy+ Cy+ Cy+t(N/8)

= ke, + t(n/2)

=kc, + (1)

=cy + ke,

=cq + Cylogn, napower of 2

Unless otherwise specified, al logarithms in this chapter are base 2. At this
point, we only have an expression for t§(n) for values of n that are a power of 2.
If nis between 25 and 2¢*1, then t§(n) will be between t(2) and t(2*1). So,
c1*C,|logn|<tg<c,+c,[log n] for al n. Thisimpliesthat t§(n) = ©(log n). O

Example 53.3 Consider the recurrence:

- JC n=1
t() = 1 2t (n/b)+cn n=2 (53.14)
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This recurrence defines t(n) only for values of n that are a power of b. The
recurrence (53 3) isthe same as (53.14) when ¢, = C4=C, anda=b=2 Even
though (53.3) is not an instance of (53. 14) (ascy # ¢4 in genera), the solution to
(53.14) with a = 2 and b = 2 does give us a function g(n) such that ty(n) =
O(g(n)). And, from the discussion following (53.3) it should be clear that tjy(n) =
O(g(n)). Whenc=cy, and a=b =2, (53.14) becomes the same as (53.8).

Assume that n = b for some natural number k. Solving (53.14) by the sub-
stitution method yields:

t(n) = a*t(n/b)+cn
= gla*t(n/b?)+c(n/b)]+cn
= a%t(n/b?)+cn(a/b)+cn
= aZ[a t(n/b®)+c(/b2)] +cn[alb+1]
= a3t(n/b®)+cn(a?/b?)+cnfalb+1]
= a3[ar t(n/b?)+c(nb )] +en[aZ/b2+alb+1]

= a*t(n/b*)+cn[a®/b3+a?/b?+alb+1]

' k-1 .
= akt(n/b*¥)+cn’S (a/b)’
i=0

- akt(L)+on'S (a/b)
i=0

k-1
=akc+en Y (a/b)’
=0

k-1 .
= (a/b)kcnten S (a/b)', (b = b'*®" = n)
i=0

=cn f (a/b)'.
i=0
When a=b, ﬁ(a/b)' k+1. When a# b, z(a/b)' = ((a/b)<*1-1)/(alb-1). If a<b
then alb<l and ((a/b)+1-1)/(alb-1) = (1 (a/b)k*1)/ (1-alb)<l/(1-alb). So,
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f(a/lo)i = ©(1). When a>b, ((a/b)<*1-1)/(alb-1) = O((a/b)¥) = O@k/b'*®") =

0
0(a'"**"/n) = ©(n'***/n). So, we obtain:

o(n) a<b
t(n)= { ©(nlogn) a=b
o(n"*%?) a>b

From this and our earlier discussion, we conclude that tf(n) = ©(nlog n) and
td(n) = ©(nlog n). O

Recurrence (53.14) is a very frequently occurring recurrence form in the
analysis of algorithms. It often occurs with the cn term replaced by such terms
as ¢, or cn?, or cn® etc. So, we would like to extend the result of Example 53.3
and obtain ageneral form for the solution of the recurrence:

t(n) = a*t(n/b)+g(n),n = b and n a power of b, (53.15)

where a and b are known constants. We shall assume that t(1) is aso known.
Clearly, (53.15) reduces to (53.14) when t(1)= c and g(n) = cn. Using the substi-
tution method, we obtain:

t(n) = a*t(n/b)+g(n)
= gla*t(n/b?)+g(b)]+g(n)
= at(n/b?)+ag(n/b)+g(n)

' k-1 .
= akt(1)+ Y a'g(n/b')
i=0

where k = log,n. This equation may be further simplified as below:

() = akt(1)+ 5 al g(b')
i=0

= akt(1)+ 3 alg(b"")
i=0

=a[t()+ %a'jg(bj)]
j=1
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k logpn _ nIogba

Sincea“=a , the expression for t (n) becomes:

{() = 41+ 3 2 gbl)]
j=1

= n°%3[1(2)+ 3 {9 (b))/(bl) )]

j=1

= %211+ 3 h(b)]
=
log,a

where h(n) = g(n)/n ™" Our fina formfor t(n) is:

t(n) = n"°%?[t(1)+f ()] (53.16)

k )
where f (n) = > h(bi) and h(n) = g(n)/n'***. Figure 53.1 tabulates the asymp-

j=1

totic value of f (n) for various h(n)s. This table together with (53.16) allows one
to easily obtain the asymptotic value of t(n) for many of the recurrences one
encounters when analyzing algorithms.

h(n) f(n)

O(n"), r<0 0(1)
©((logn)'),i=0 | ©(((logn)'*H)/(i +1))
Q(n"), r>0 O(h(n))

Figure 53.1 f (n) values for various h(n) values.

Let us consider some examples using this table. The recurrence for t§
when nisapower of 2is:

t(n) =t(n/2)+c,
and t(1) = ¢,. Comparing Wlth (53.15), we see that a=1, b=2, and g(n) = c,. So,

logp(@) = 0 and h(n) = g(n)/n'°®? = ¢, = c,(logn)° = O((Iogn)o) From ?2F7.1},
we obtain f (n) = ©(log n). So,
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t(n) = n'°%*(c,+O(log n))

= 0O(log n)

For the recurrence
t(n) = 7t(n/2)+18n2, n>2 and n a power of 2,

we obtaln a=7, b—2 and g(n) = 18n?. So, logpa = log,7 = 2.81 and h(n) =
18n2/n/°%7 = 180271997 = = O(n") where r = 2-log,7 < 0. So, f (n) = O(1). The
expression for t(n) is:

t(n) = n'*% (1(1)+O(1))

— G)(nlogz7)
ast(1) may be assumed to be constant.
Asafinal example, consider the recurrence:
t(n) = 9t(n/3)+4n®, n> 3 and a power of 3.

Comparing with (53.15), we obtain a=9, b=3, and g(n) = 4n®. So, logya =2 and
h(n) = 4n®/n? = 4n* = Q(n%). From Figure 53.1, we see that f (n) = ©(h(n)) =
o(n*). So,

t(n) = n?(t(1)+0(n%)

O( n®)

ast(1) may be assumed constant.

53.3 INDUCTION

Induction is more of a verification method than a solution method. If we have an
idea as to what the solution to a particular recurrence is then we can verify it by
providing a proof by induction.

Example 53.4 Induction can be used to show that t (n) = 3n+2 is the solution to
the recurrence:

_ 2 n=0
tM = 1 3+t(n-1) n>0

For the induction base, we see that when n=0, t(n) = 2 and 3n+2 = 2. Assume
that t(n) = 3n+2 for some n, n = m. For the induction step, we shall show that
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t(n) = 3n+2 when n = m+1. From the recurrence for t(n), we obtain t(m+1) =
3+t(m). But from the induction hypothesis t(m) = 3m+2. So, t(m+1) = 3+3m+2
=3(m+1)+2. O

Example 53.5 Consider recurrence (53.10). We shall show that R(n)<4cn, n=1.

Induction Base: For n=1, and 2, (53.10) yieds. R(1)<c<4cn and
R(2)<2.5c<4cn.

Induction Hypothesis: Let m be an arbitrary natural number, m=3. Assume that
R(n)<4cn for all n, 1<n<m.

Induction Step: For n=mand m even, (53.10) gives:

R(M) < cm+2-' 5 R()
m) < cm+— |
m%z

8c m-1
<cm+— > i (fromthelH)
m/2

<4cm

When misodd, (53.10) yields:

2 m-1 .
R(m)<cm+— > R(i)
(Mm+1)/2
m-1
<cm+§9 > i
M (m+1)2

<4cm

Since R(n)<4cn, R(n) = O(n). Hence, the average computing time of procedure
sel ect isO(n). Since procedure sel ect spends at least n units of time on
each input of size n, t3ye(N) = Q(n). Combining these two, we get t3yeqt () =
O(n). O

Example 53.6 Consider recurrence (53.9). Let t(n) denote t¥(n). We shall
show that t(n) = c,n(n+1)/2+c;—c, = O(n?).

Induction Base: Whenn =1, (53.9) yieldst(n) =c;. Also, con(n+1)/2+c—Cy
=0.

Induction Hypothesis: Let m be an arbitrary natural number. Assume that t(n)



12 Chapter 53 Recurrence Equations

=con(n+1)/2+c;—c, whenn=m.

Induction Step: When n=m+1, (53.9) yields:

t(m+1)=co(m+1)+t(m)
=cy(m+1)+c,m(m+1)/2+c,—c, (fromthe IH)
=[2c,(m+1)+c,m(m+1)]/2+c,—C,
=co(m+1)(m+2)/2+c,—C,. O

As mentioned earlier, the induction method cannot be used to find the solu-
tion to a recurrence equation; it can be used only to verify that a candidate solu-
tion is correct.

534 CHARACTERISTIC ROOTS
The recurrence equation of f (n) isalinear recurrence iff it is of the form:

k
f(n)=2agi(mf(n-i)+g(n)
i=1

where the gj(n), 1<i <k and g(n) are functions of n but not of f. A linear
recurrence is of order k iff it is of the form given above, k is a constant, and
ok(n) is not identically equal to zero. If g, (n) is zero for al n, then the order of
the recurrence is less than k. A linear recurrence of order k is of constant
coefficients iff there exists constants a;, a,, ---, a such that g;(n) = &,
1<ic<k In this section, we are concerned only with the solution of linear
recurrences of order k that have constant coefficients. These recurrences are of
the form:

f(n=af(n-D+a,f(n-2)+ --- +afn-k)+g(n),n=k (53.17)

where a, # 0 and g (n) is a function of n but not of f. (53.17) is a homogeneous
recurrence iff g(n) = 0. One may readily verify that for any set f (0), f (1), - - -,
f(k—1) of initia values, the recurrence (53.17) uniquely determines f (k),
fk+ 1), ---.

Many of the recurrence equations we have considered in this book are
linear recurrences with constant coefficients. Using t(n) to denote ty, (53.3)
takes the form:

n=1

_ | C1
t) = | 2t(n/2)+c4n n>=2 and a power of 2 (53.18)

Thisisn't alinear recurrence of order k for any fixed k because of the occurrence
of t(n/2) on the right side. However, since n is a power of 2, (53.18) may be
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rewritten as:
()= [2t(2k—1)+c42k k>1 (53.19)
Using h (k) to denote t (2¥), (53.19) becomes:
_1C k=0
(k) = [Zh(k —1)+c,2¢ k=1 (53.20)

Recurrence (53.20) is readily identified as a linear recurrence with constatnt
coefficients. Itisof order 1 and it is not homogeneous. Since h(k) = t(2) =t(n)
for n apower of 2, solving (53.20) is equivalent to solving (53.3).

Recurrence (53.5) is a linear recurrence. However, it is not of order k for
any fixed k. By performing some algebra, we can transform this recurrence into
an order 1 linear recurrence. We uset(n) as an abbreviation for t3(n). With this,
(53.5) becomes (for n > 1):

t(n) = c,n + %nft 0 (53.21)
i=1

Multiplying (53.21) by n, we obtain:

nt(n)= ¢+ 25 () (53.22)
i=1

Substituting n — 1 for nin (53.22), we get:

(=Dt -1)= con—1)2 + 25 (1) (53.23)
i=1

Subtracting (53.23) from (53.22) yields:
nt(n)-(n-Ht(h-1)=(2n-I)c + 2t(n - 1)
or
nt(n) = (2n - )c, + (n+ Vt(n - 1)

or
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n+1
n

t(n) = th-1)+@2- %)c2 (53.24)

Even though (53.24) is not a linear recurrence with constant coefficients, it
can be solved fairly easily. Recurrence (53.8) can be transformed into an
equivalent constant coefficient linear recurrence of order 1 in much the same way
as we transformed (53.3) into such a recurrence. (53.9) is already in the form of
(53.17). Therecurrence:

FN=FmMh-D)+FN-2), n=2

defines the Fibonacci numbers when the initial values F(0) =0and F(1) = 1 are
used. Thisisan order 2 homogeneous constant coefficient linear recurrence.

Linear recurrences of the form (53.17) occur frequently in the analysis of
computer algorithms, particularly in the analysis of divide-and-conquer algo-
rithms. These recurrences can be solved by first obtaining a general solution for
f (n). This general solution caontains some unspecified constants and has the
property that for any given set f (0), f (1), - - -, f (k= 1) of initial values, we can
assign values to the unspecified constants such that the general solution defines
the unique sequence f (0), f (1), - --.

Consider the recurrence f (n) = 5f (n—1) - 6f (n—2), n=>2. Its general
solution is f (n) =c,2" + ¢,3" (we shall soon see how to obtain this). The
unspecified constants are ¢, and c,. If we are giventhat f (0) =0and f (1) = 1,
then we substitute into f (n) = ¢412" + ¢,3" to determine ¢4 and c,. Doing this,
we get:

f(O)=cy+cr=0andf()=2c;+3c,=1

Solving for ¢, and c,, weget ¢, = —c, = -1. Therefore, f (n) =3"-2",n>0,is
the solution to the recurrence f (n) = 5f (n—1) —6f (n —2),n=2when f (0) =0
and f (1) = 1. If we change the initial valuesto f (0) = 0 and f (1) = 10, then we
get:
f(O)=cy+c,=0andf(1)=2c, + 3c,=10

Solving for ¢4 and c,, we get ¢, = —=c, = —=10. Therefore, f (n) = 10(3" - 2"),
n=0.

The general solution to any recurrence of the form (53.17) can be

represented as the sum of two functions f,(n) and f,(n); f,(n) isthe general solu-
tion to the homogeneous part of (53.17):

fa(n) = arfp(n -1 + afh(n -2) + - + afp(n - k)

and f,(n) isaparticular solution for:
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fo(n) =aifo(n -1 +axf(n-2)+ - + afy(n-k) + g(n)

While at first glance it might seem sufficient to determine f,(n), it should be
noted that f,(n) + fy(n) is also a solution to (53.17). Since the methods used to
determine f,(n) will give us an fy(n) form tkhaI does not explicitly contain all

zeroes of f (n) (i.e., al solutionsto f (n) — > &f (n—i)=0), it is necessary to

=1
determine f,(n) and add it to f,(n) to get thelgeneral solution to f (n).

53.4.1 Solving For f,(n)
To determine f,(n) we need to solve arecurrence of the form:

fa(n) = asfy(n - 1) + axfy(n -2) + -+ + afh(n - k)
or
fa(n) —a;f(n-1) -afn-2)- - —afy(n-k)=0 (53.25)

We might suspect that (53.25) has a solution of the form f,(n) = Ax". Sub-
stituting thisinto (53.25), we obtain:

n-2 _

A(X" —a;x"" —a,x - —ax" =0

We may assume that A # 0. So we obtain:

k .
Xn—k(xk _ Zaixk_l) =0
i=1

The above equation has n roots. Because of the term x" %, n — k of these roots
are 0. Theremaining k roots are roots of the equation:

k k-1 k-2

XC—axf Tt maxt e = —g =0 (53.26)
(53.26) is caled the characteristic equation of (53.25). From elementary
polynomial root theory, we know that (53.26) has exactly krootsrq,ro, - -, ry.

The roots of the characteristic equation

x?-5x+6=0 (53.27)

arer, =2andr, = 3. The characteristic equation
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x3-8x%2+ 21x-18=0 (53.27)

hastherootsrq =2,r, = 3,and r; = 3. Asis evident, the roots of a characteris-
tic equation need not be distinct. A root r; is of multiplicity j iff r; occurs j
times in the collection of k roots. Since the roots of (53.27) are distinct, all have
multiplicity 1. For (53.28), 3 isaroot of multiplicity 2, and the multiplicity of 2
is 1. The distinct roots of (53.28) are 2 and 3. Theorem 53.1 tells us how to
determine the general solution to a linear homogeneous recurrence of the form
(53.25) from the roots of its characteristic equation.

Theorem 53.1 Let the distinct roots of the characteristic equation:

k-1 k-2

xK—axkl-axk2- ... —a =0
of the linear homogeneous recurrence

fa(n) = aifa(n - 1) + axfy(n -2) + -+ + afy(n - k)

betq, ty, -+, ts, where s< k. Thereisagenera solution f,(n) which is of the
form:
fa(n) = ug(n) + up(n) + -+ + ug(n)
where
u(n) = (G, + &,n+c,n’+ - +c  n"H

Here, wisthe multiplicity of theroot t;.
Proof See the references for a proof of this theorem. O
The characteristic equation for the recurrence

f(n)=5M-1)-6f(n-2),n=2

X2 -5x+6=0

The roots of this characteristic equation are 2 and 3. The distinct rootsaret; = 2
and t, = 3. From Theorem 53.1 it follows that f (n) = uy(n) + uy(n), where
uq(n) =c12" and u,(n) = c,3". Therefore, f (N) =c42" + c,3".
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(53.28) isthe characteristic equation for the homogeneous recurrence:
f(n)=8f (n—-1)-21f (n-2) + 18f (n—3)

Itsdistinct rootsaret; =2 and t, = 3. t, isaroot of multiplicity 2. So, u;(n) =
c42", and u,(n) = (c, + c3n)3". The general solution to the recurrence is f (n) =
c12"+ (c, + c3n)3".

The recurrence for the Fibonacci numbers is homogeneous and has the
characteristic equation x> -x—-1=10. Itsrootsarer; = (L+ V5)/2and r, =
(1-+5)/2. Since the roots are distinct, u;(n) = c1((1+ V5)/2)" and u,(n) =
co((L-V5)/2)". Therefore

F(n):cl[l+2‘/§]n+c2[1_‘/§]

isageneral solution to the Fibonacci recurrence. Using the initial values F(0) =0

and F(1) = 1, we get c;+c, = 0 and c4(1+5)/2+c,(1-5)/2 = 1. Solving for ¢, and
C,, Weget c; =-Cc, = 1/5. Sothe Fibonacci numbers satisfy the equality:

= L 1+\/§} n_i[l—\/g] "

v5 L 2 V5

Theorem 53.1 gives us a straightforward way to determine a general solu-

tion for an order k linear homogeneous recurrence with constant coefficients. We

need only determine the roots of its characteristic equation.

2

53.4.2 Solving For f,,

There is no known general method to obtain the particular solution f,(n). The
form of f,(n) depends very much on the form of g(n). We shall consider only
two cases. One where g(n) is a polynomial in n and the other where g(n) is an
exponential function of n.

When g(n) = Oc,}| the particular solution is f,(n) = 0.

Wheng(n)= > g n', and ey # 0, the particular solution is of the form:
i=0
fo(n) = Po+ P1n + Pon?+ -+ pgn? ™ (53.29)

wherem = 0 if 1 isnot aroot of the characteristic equation corresponding to the
homogeneous part of (53.17). If 1 is aroot of this equation, then m equals the
multiplicity of the root 1.
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To determine pg, P1, ..., Pa+m, WE Merely substitute the right hand side of
(53.29) into the recurrence for f,( ); compare terms with like powers of n on the
left and right hand side of the resulting equation and solve for pg, p1, P2, ...

Pa+m- .
As an example, consider the recurrence:
f(n)=3f(n-1)+6f(n-2)+ 3n+ 2 (53.30)

g(n) = 3n+2. The characteristic equation isx2-3x-6 = 0. 1 is not one of its roots.
So, the particular solution is of the form:

fo (N) = po + p1 N

Substituting into (53.30), we obtain:
PotP1N=3(po + p1 (N-1)) + 6(po + p1 L(N-2)) + 3n + 2
=3pg+ 3p1h—3p1+6pg+6p; N—12p; + 3n+ 2
= (9o —15p1 + 2) + (9p1 + 3)n

Comparing terms on the left and right hand sides, we see that:

Po = 9po-15p; +2

and
P1=9p1+3.

So, p1 =-3/8 and pg =-61/64. The particular solution for (53.30) is therefore:

_ 61 3
h)= "5 ="
Consider the recurrence:

f(nN)=2f(n-1)-f(n-2)-6 (53.31)

The corresponding characteristic equation is x>~2x+1=0. Itsrootsarer; =r,
=1. So, fy(n) isof the form:

fo(n) = po + p1n + pon?

Substituting into (53.31), we obtain:
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|Oc>+|021n+|02n2 = 2(po+p1n-p1+P2(n?-2n+1))-po-p1n+2p;-
p,(n“-4n+4)-6

= (2p0-2P1+2P2-Po+2P1-4P2-6)+(2p1-4p 2-p1+4p,)N+pon?
= (Po-2p2-6)+p1N+p,n?

Comparing terms, we get:
Po = Po-2P2-6

or

p2=-3
So, fo(n) = p:pan-3n®. fu(n) = (co+c1n)(1)". So, f (n) = cot+cint+Po+pin-3n2
= c,+C3n-3n2. ¢, and c3 can be determined once the intia values f(0) and (1)
have been specified.

When g(n) is of the form ca" where ¢ and a are constants, then the particu-
lar solution f,(n) is of the form:

fo(n) =(Po + pan + pon® + -+ + pyn*)a”
where w is 0 if aisnot a root of the characteristic equation corresponding to the
homogeneous part of (53.17) and equals the multiplicity of a otherwise.
Consider the recurrence:
f(n)=3f (n-1) + 2f (n—-4) -6 012" (53.32)

The corresponding homogeneous recurrence is:

fn(n) = 3f(n-1)+2f,(n-4)
Its characteristic equation is:

x*-3x3-2=0

We may verify that 2 is not aroot of this equation. So, the particular solution to
(53.32) is of the form:

fo(n) = po2".
Substituting thisinto (53.32), we obtain:

p02n = 3p02n_1+2p02n_4-6* 2"
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Dividing out by 2"~*, we obtain:
16pg = 24py+2po-96 = 26py-96
So, pg = 96/10 = 9.6. The particular solution to (53.32) is fy(n) = 9.6*2"
The characteristic equation corresponding to the homogeneous part of the
recurrence:

f (n) = 5f (N-1) - 6f (n-2) + 403" (53.33)

isx?-5x+ 6=0. Itsrootsarer; =2 and r, = 3. Since 3isaroot of multipli-
city 1 of the characteristic equation, the particular solution is of the form:

fo(n) = (Po+p1n)3".
Substituting into (53.33), we obtain:

po3n+p1n 3N
= 5(po+p1(n-1))3" -6(po+p1(n-2))3" Z+4+3"

Dividing by 3"72, we get:
9po+9p1n = 15py+15p1n-15p1-6pg-6p1N+12p ;1 +36
= (9P0-3p1*36)+9p1N
Comparing terms, we obtain:
91 =9p1
and
9p0 = 9po-3p1+36

These equations enable us to determine that p; = 12. The particular solution to
(53.33)is:

fo(n) = (po+12n)3"
The homogeneous solution is:

f(n) =c12"+c,3"
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The general solution for f (n) istherefore:

f(n) = fh(n)+f,(n)
=12"+(Cy+po)3"+12n3"
=c12"+c33"+12n3"

Given two initial values, f(0) and f(1), we can determine ¢4 and c5.

53.4.3 Obtaining The Complete Solution
We know that fi,(n)+f,(n) isageneral solution to the recurrence:

f(n) = a;f (n-1)+a,f (n-2)+ - - - +a.f (n—-k)+g(n), n =k (53.34)

By using the initial values f(0), f(1), ..., f(k-1), we can solve for the k undeter-
mined coefficients in fy(n) + fy(n) to obtain the unique solution of (53.34) for
which f(0),...,f(k-1) have the given values.

5344 Summary

The characteristic roots method to solve the linear recurrence (53.34) consists of
the following steps:

1. Write down the characteristic equation:

2. Determine the distinct roots tq, to, ..., tg of the characteristic equation.
Determine the multiplicity m, of theroot t;, 1<i<s.

3. Writedown the form of f,(n). l.e.,

fh(n) = uy(n) + ux(n) + -+ - + ug(n)
where
u(n) = (G, + G,n+c,n?+ -~ +¢ _n"H

and w = m; = multiplicity of theroot t;.
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4. Obtain the form of the particular solution f,(n).
(@ If g(n) =0then fy(n) =0.
d

(b) Ifg(n)= Ze,ni and ey # 0, then f,(n) has the form:
i=0

fo(N) = po+ pin+ panZ+ - oo+ pyapndt™
wherem = 0 if 1isnot aroot of the characteristic equation. mis the

multiplicity of 1 asaroot of the characteristic equation otherwise.
() Ifg(n)=c*a" then

fo(n) = (Po + p1n + pon + - -+ + pyn™)a”
wherew is zero if ais not aroot of the characteristic equation. If ais

aroot of the characteristic equation, then w isthe multiplicity of a.

5. If g(n) # 0, then use the f,(n) obtained in (4) above to eliminate all
occurrences of f(n-i), O<i<k from (53.34). This is done by substituting the
value of f,(n-i) for f(n-i), O<i<k in (53.34). Following this substitution, a
system otp equations equating the coefficients of like powers of n is
obtained. This system is solved to obtain the values of as many of the p;s
aspossible.

6. Write down the form of the answer. 1.e, f (n) = f,(n)+f,(n). Solve for the
remaining unknowns using the initial values f(0), f(1), ..., f(k-1).

Theorem 53.2 The six step procedure outlined above always finds the unique
solution to (53.34) with the given initial values.

Proof See the text by Brualdi that is cited in the reference section. O

5345 EXAMPLES
Example 53.7 The characteristic equation for the homogeneous recurrence:

t(n) = 6t(n-1) - 4t(n-2), n=2

X2 -6x+4=0

Its roots are r, = 3+V5 and r, = 3-V5. The roots are distinct and so t(n) =
c1(3+V5)"+c,(3-V5)". Suppose we are given that t(0) = 0 and t(1) = 4V5.
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Substituting n =0 and 1 into t(n), we get:
O0=cqi+cCy
and
45 = ¢1(3+5) + Cc,(3-5)
The first equality yields ¢4 = -c,. The second then gives us 45 = ¢(3+5-3+5) =
25c, or ¢4 = 2. The expression for t(n) is therefore: t(n) = 2(3+5)" - 2(3-5)",

n=0. O

Example 53.8 In this example we shall obtain a closed form formulafor the sum

n
s(n) = > i. Therecurrence for s(n) is easily seen to be:
i=0

s(n) =s(n-1) + n, n=1

Its characteristic equation isx-1=10. So, s,(n) =c4(1)" =c4. Since g(n) =nand
lisaroot of multiplicity 1, the particular solution is of the form:

$(n) = po+P1n+pzn?
Substituting into the recurrence for s(n), we obtain:
Po*P1N+Pan? = pot+py(n-1)+pa(n—1)7+n
= Po+P1N-P1+P2n®-2pzn+po+n
= (Po-P1+P2) + (P1=2p2+1)n + pon?
Equating the coefficients of like powers of n and solving the resulting equations
we get pl = py, and 2p, = 1 or p, = 1/2. The particular solution is s,(n) =
Pot+n/2+n?/2 The general solution becomes s(n) = (cy+pg) + N/2+ n4/2.
Since (0) =0, c1+pg =0. Hence, s(n) = n(n+1)/2, n=0. O
Example 53.9 Consider the recurrence:
f(n) = 5f(n-1) - 6f(n-2) + 3n?, n=2

and

f(0) = 2.5; f(1) = 4.5.
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The characteristic equation for the homogeneous part is:
X2-5x+6= 0

Itsrootsarer; =2 and r, = 3. The genera solution to the homogeneous part is
therefore:

fo(n) = c12" + c,3".

Since g(n) = 3n? and 1 is not a root of the characteristic equation, the particular
solution has the form:

fo(n) = Po+pan+pn?
Substituting into the recurrence for f( ), we obtain:
Po+P1n+pzn?
= 5(po+p1(N-1)+p2(n-1)%) - 6(pg+p1(N-2)+p2(n-2)%) + 3n?
= (7p1=Po=19p2) + (14po—p1)n + (3-p2)n?
Comparing terms, we get:
P2 = 3-p
P1=14p,-py
Po = 7P1-Po-19p2

Hence, p, = 1.5, p1 = 7p, = 10.5, and py = 22.5. So, the general solution for
f(n)is

f(n) =c,2" + c,3" + 225+ 10.5n + 1.5n?

Since f(0) and f(1) are known to be 2.5 and 4.5, respectively, we obtain:
25=cy+cCcy,+225

and
45=2c, + 3c, +345

Solving for ¢; and c,, we get: ¢4 = -30 and ¢, = 10. The solution to our
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recurrence is therefore:
f(n) =22.5 + 10.5n + 1.5n% - 30*2" + 10*3". O
Example 53.10 Let us solve the recurrence:
f(n) = 10f(n-1)-37f(n-2)+60f (n-3)-36f(n-4)+4, n=4
and
f0)=f(1)=f(2)=f(3) =1.
The characteristic equation is:
x4-10x3+37x?-60x+36 = 0
or
(x=2)*(x-3)*=0
The four rootsarer; =r, =2,andrg =r, = 3. Since each is a root of multipli-
city 2, ug(n) = (c1+c2n)2" and u(n) = (cz+c4n)3". The solution to the homo-
geneous part is:
fa(n) = (1+c2n)2" + (C3+c4n)3"

Since g(n) = 4 = 4*n° and 1 is not aroot of the characteristic equation, fo(n) is of
the form:

fo(n) = po
Substituting into the recurrence for f(n), we get:
Po = 10po—37po+60po—36po+4
or
Po=1
The general solution for f (n) is:
f(n) =(cq1+c,n)2" + (c3+cyn)3" + 1

Substituting forn=0, 1, 2, and 3, and using f(0) = f(1) = f(2) = f(3) = 1, we get:
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O0=cy+cC3 (53.353)
0=2c;+2c,+ 3c3+ 3¢y (53.35b)
0=4cq, + 8c, + 93 + 18cy (53.35¢)

0=8cy + 24c, + 27c3 + 8lcy (53.35d)

Solving for ¢4, €5, C3, and ¢4, We obtain c; =Cc, =c3=¢, =0. So, f(n) = 1,
n=1.

We may verify that f (n) = 1, n=0 does indeed satisfy the given recurrence.
We proceed by induction. For the induction base, we need to show that f (n) =1,
0=n<3. Thisistrue by definition of f(). So, let m be an arbitrary natural number
such that m=3. Assume f (n) = 1, for nc<m. When n = m+1, f(m+1) = 10f(m) -
37f(m-1) + 60f(m-2) - 36f(m-3) + 4 = 10-37+60-36+4 = 1.

Let us change the initial values to f(0) = f(1) = f(2) = 1, and f(3) = 4. Now,
only equation (53.35d) changes. It becomes:

3=8cq + 24c, + 27c3 + 81cy (53.35¢)

Solving (53.35 ato ¢) and (53.35¢) for ¢4, C5, C3, and ¢4, We Obtainc,; =6,Cc, =
15c3=-6,andc, =1. So,

f(n)=(6+15n)2"+ (n-6)3" 1, n=0

Once again, one may verify the correctness of this formula using induction on n.
O

53.4.6 Solving Other Recurrences

Certain non-linear recurrences as well as linear ones with non constant
coefficients may also be solved using the method of this section. In all cases, we
need to first perform a suitable transformation on the given recurrence so as to
obtain alinear recurrence with constant coefficients. For example, recurrences of
the form:

K
fé(n) = Y af(n-i) + g(n), n=k
i=1
may be solved by first substituting f(n) = q(n) to obtain the recurrence:
k
a(n) = > aq(n-i) + g(n), n=k

i=1
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This can be solved for g(n) as described earlier. From g(n) we may obtain f (n)
by noting that f (n) = (q(n))°.
Recurrences of the form:

k
nf (n)= 3 (n-i)af (n-i)+ g(n), n=k
Rt
may be solved by SubStitll,I'[i ng q(n) = nf(n) to obtain:

k
a(n)= > aq(n-i)+ g(n), n=k

i=1

Since f (n) = q(n)/n, f (n) is determined once q(n) is.

535 GENERATING FUNCTIONS
A generating function G(z) is an infinite power series

G(2) = %cizi (53.36)
i=0

We shall say that the generating function G (z) corresponds to the function f: N -
> Riff ¢; = f(i), i=0.

Example 53.11 G(2) = 3 2Z' generates the function f (n) = 2, n=0; G(2) = S iz'
= _ 20
generates the function f (n) = n, n=0; G(z) = ¥ 2z' generates the function:
i>8

_ ] 0 0sn<7
FM)=12 ns
A generating function may be specified in two forms. One of these is
called the power series form. This is the form given in equation (53.36). The
other formis called the closed form. In this form there are no occurrences of the
symbol 3.

O

Example 53.12 The power series form for the generating function for f (n) = 1,

n20is G(z) = > z'. So, zG(z) = 3 z'. Subtracting, we obtain: G(z) - zG(z) =
i20 i>1

Sz -Y7z =1 So,G(2) = ﬁ The closed form for the power series 52" is

i20 i>1 ” i20

therefore 1"
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Note that ﬁ = 3 7' only for those values of z for which the series 3 2/
& i20 i20
converges. The values of z for which this series converges are not relevant to
our discussion here. O

Example 53.13 Let n be an integer and i a natura number. The binomial
coefficient [?] is defined to be:

[n] _ n(n=-)(n-2)....(n=i +1)
7 ii-D3-2)...(0)

3 32 _ ., (4 _43__. (3 _ (34 _
=0, [2] - 2*1'3’ [2] R [2] =g 6
The binomial theorem states that:

(1+2)" = éo [?] Z',n=0

A more general form of the binomial theorem is:

(1+2)" = E [”] A (53.37)
i=0

wherem=nif n >0 and m= o otherwise.
(53.37) leads us to some important closed forms. When n = -2, we obtain:

1 (2.
(1+2)? _Eo[ i]z
But,
2] (DR i
[ i] ST T Sl G
So,

(1+1Z)2 = S (-1 (i +1)7 (53.38)
i=0
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Substituting —z for zin (53.38), we obtain:
L - s+

(i-2? >

Hence, 7 isthe closed form for 3 (i +1)z'. (53.37) may be used to obtain

1-z i>0
the power series form for n=1. O

1-z)"’

Aswe shall soon see, generating functions can be used to solve recurrence
relations. First, let uslook at the calculus of generating functions.

53.5.1 Generating Function Operations

Addition and Subtraction: If G1(2) = 3 ¢z and G»(2) = ¥ d;z' are the generat-
20 =0
ing functions for f1 and f,, then the generating function for f, + f, is:

G3(2) = ¥ (ci+d)Z
i=0

and that for f{-f5 is:

Ga(@) = Y (ci-d)zZ .
i20

These two equalities follow directly from the definition of a generating function.

Multiplication: If G1(2) = Zcizi is the generating function for f, then G,(2) =
. i>0
aG1(2) = Y (ac;)z' isthe generating function for a*f (ais a constant).
i>0 .
Since zKG,(2) = 5 ¢;Z**', it isthe generating function for afunction g such

i>0
that g(j) = 0, O<j<k and g(j) = f(j - k), j=k. So, multiplying a generating function
by z¥ corresponds to shifting the function it generates by k.

1

Example 53.14 In Example 53.13, we showed that 127 = Z(i+l)zi. Multi-
—Z i=0
. . . Z _ . i+1 _ . Z .
plying both sides by z, we obtain =5 (@+1)z'"* = Yiz". So, is
(1-2? = i=0 (1-2)?

the closed form for the generating function for f(i) =i, i=0. O
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The product G1(2)*G,(2) of the two generating functions G(2) = Zcizi
. _ i>0
and G,(z) = > diZ' isathird generating function G3(z) = > ez'. One may ver-
i>0 i>0
ify that e isgiven by:

i
€ = Zdei_J‘, i=20 (53.39)
j=0

Note that * is commutative (i.e.,, G1(2) * G,(2) = G,(2) * G1(2)).
An examination of (53.39) indicates that the product of generating func-

tions might be useful in computing sums. In particular, if G,(2) = Zzi = 1>
i20

(Example 53.11) (i.e., d; = 1, i=0), then (53.39) becomes

i
6= 3¢ (53.40)
j=0

n
Example 53.15 Let ustry to find the closed form for the sum s(n) = > i. From
i=0

Z__ isthe closed form for the generating func-

Example 53.14, we know that
(1-2)?

tion for f(i) =i, i=0. Also, from Example 53.12, we know that i generates f(i)

. z 1 z . - ;
=1, i=0. So, O = is the closed form for (S iz')(3z". Let
(1-2? 1z (1-2)° Eo Eo
the power series form of (12)3 be Ze,zi. From (53.40), it follows that
—Z i=0

n
e, = >i = 9n), n=0. Let us proceed to determine e,. Using the binomial
i=0
theorem (53.37), we obtain:
-3 _ -3 i
1-2°= 5 7] vz
i20
The coefficient of 2" in the expansion of (1-z)2 istherefore:

31, -t _ (3)(4)..(-3-n+2) , .-

[n—l]( = (h-1)(n-2)..(1) ™
_ (n+Hn(n-1)..(3)
(n-1)(n-2)...(1)
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_ n(n+1)
2

So, the coefficient e, of z" in the power series form of isn(n+1)/2 = g(n),

z
_2)3
n=0. O

Differentiation: Differentiating (53.36) with respect to z gives.

d L
EG(Z) = EOICiZI 1

or

d e
ZEZ—G (2) = E)(Iq)z (53.41)

Example 53.16 In Example 53.13, the binomia theorem was used to obtain the
closed form for 3 (i+1)z'. This closed form can also be obtained using
i20
differentiation. From Example 53.12, we know that ﬁ = Zzi. From (53.41),
= i =0

it follows that:
d 1 i
— =5z
or
1 . -
=5(@{+D)z O
(1_2)2 i>0

Integration: Integrating (53.36), we get

JG(udu= ¥ cj47!/j (53.42)
0

j=1

Example 53.17 The closed form of the generating function for f (n) = 1/n, n=1
can be obtained by integrating the generating function for f (n) = 1. From Exam-
ple 53.12, we obtain:
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1 i
—_— u
Therefore
V4 1 z
——du= 7Y [u'du
'([1_u izo'!)’
— 1 i+1
i>!t1
= z _lzi
i>0 !
But,

So, the generating function for f (n) = 1/n, =1 and f(0) = 0, is-In(1-z). O
The five operations: addition, subtraction, multiplication, differentiation,
and integration prove useful in obtaining generating functionsfor f:N - R.
Figure 53.2 lists some of the more important generating functions in both
power series and closed forms.

53.5.2 Solving Recurrence Equations

The generating function method of solving recurrences is best illustrated by an
example. Consider the recurrence:

F(n) =2F(n-1) + 7, n=1; F(0) =0

The steps to follow in solving any recurrence using the generating function
method are:
1. LetG(2)= Za,-zi be the generating function for F(). So, & = F (i), i=0.
i20
2. Replaceall occurrences of F() in the given recurrence by the corresponding
g;. Doing this on the example recurrence yields:

a, = 2a,-1 +7,n=21
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Closed Form | Power Series
(1-az)™? yaz
i>0
(1-az)? S (i+1a'z
i>0
m n -
3 | (1+a2)" Z[i]a'z'
i=0
m=nif n=0
m = o otherwise
—1)i+1 . .
4 | In(1+az) Zi—liL a'z'
i>1
1 i
5 | -In(1-az) zi—az
i>1
6 e* Z.i a'z
>0

Figure 53.2 Some power series.

3.

Multiply both sides of the resulting equation by z" and sum up both sides
for al nfor which the equation isvalid. For the example, we obtain:

Sanz" =2y a2+ 372"

n=1 n=1 n=1
Replace al infinite sums involving the as by equivalent expressions
involving only G(z), z, and a finite number of the as. For a degree k
recurrence only ag, ay, ..., a-1 Will remain. The example yields:

G(@z)—ap=2G(@z)+ 372"
n=1
Substitute the known values of ag, a,, ...,ax-; (recal that F(i) = &, O<i<k.
Our example reduces to:

G(2)=2zG(z) + 3 7"

n=1
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6. Solve the resulting equation for G(z). The example equation is easily
solved for G(z) by collecting the G(z) terms on the left and then dividing
by the coefficient of G(z). We get:

1
G@=>72"0—
@ 27 Ui
7.  Determine the coefficient of z" in the power series expansion of the expres-
sion obtained for G(z) in step 6. This coefficient is a, = F(n). For our
example, we get:

1
G2=S72"0——
@) nél z 1-2z

= S72"03 27

n=1 i20
The coefficient of z" in the above series product is:

72" = 7(2"-1)

Ms

i=1
So, F(n) = 7(2"-1), n=0.
The next several examples illustrate the technique further.
Example 53.18 Let usreconsider the recurrence for the Fibonacci numbers:
F(n) = F(n-1) + F(n-2), n=2
and
F(0) =0, F(1) = 1.
Let G(2) = Zcizi be the generating function for F. From the definition of a gen-
erating fungioon, it follows that F(j) = ¢;, j=0. So, F(n) = ¢,, F(n-1) = ¢4, and
F(n-2) = ¢,,—». From the recurrence relation for F, we see that:
Ch = Cu—1 t Ch—p, N22

Multiplying both sides by z" and summing from n=2 to o, we get:

>c2"@=@3 ch-12" + Y chpZ" (53.43)

n=2 n=2 n>2
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Observe that the sum cannot be performed from n = 0 to « as the recurrence F(n)
= F(n-1) + F(n-2) isvalid only for n=2. (53.43) may be rewritten as:

G(2)-C12-Co =23 Chaz" 1+ 225 ¢y 2" 2

n=2 n=2
=25 ¢z +22¥ 7
i>1 >0

= 7G (2)-Coz+2°G(2)

Coallecting terms and substituting cq = F(0) = 0 and ¢; = F(1) = 1, we get:

G =
@ 1-z-7?
_ z _1+V5 15
T Ay 2T 2 b=
S -
- v5 (1-az 1-bz

From Figure 53.2, we see that the power series expansion of (1-az)™ is Z(az)i.
i20
Using this, we obtain:

G(z) = % [an‘zi - ié}biz‘]

1 (Lipil,i
:izoﬁ [a -b ] z
Hence, F(n) =c, = % [ 1+2\/§] T [ 1—2\/5] n] ,n=0. 0

Example 53.19 Consider the recurrence:

_1]0 n=0
t(n)= [at(n—1)+bn n=1

Let G(Z) = S ¢;Z' be the generating function for t(n). So, t(n) = ¢,, n=0. From
=
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the recurrence, it follows that:
C, = ac,—1 + bn, n=1
Multiplying both sides by z" and summing from n=1to « yields:

> cz"= Y ac,1z"+ 3 bnz"
nx1 nx1 n=1

or

G(2)-co=azy ¢ 12"t + 3 bnz"
n=1 n=1

=azG(z)+ 3 bnz"

n=1
Substituting ¢ = 0 and collecting terms, we get:

G(2) = (3 bnz")/(1-az)

n=1
= (3 bnz")(T a'z)
n=1 i=>0

Using the formulafor the product of two generating functions, we obtain:

n
Hence, t(n) =ba" 3 —IT n=0. O
a

i=1

N
Example 53.20 In the previous example, we determined that ¢, = ba" 3 —IT A
i=0a

no
closed form for ¢, can be obtained from aclosed formford, = 3 —IT n=0. First,
. i=0@ _
let us find the generating function for f(i) = i/a'. We know that (1-2)* = S Z'.
. i>0
So, (1-z/a)* = 3 (z/a)'. Differentiating with respect to z, we obtain:
i>0
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d 1 d i | i1
—_ = —(z/a) = —_7
dz 1-z/a Eo dz (2/a) Eo a'

or
1 1 [
——=5 —z
a (1-z/a)? Eo al

Multiplying both sides by z, we get:
Z _ I_ i

a(l-z/a? 5 a

n .
The generating function for > i/a' can now be obtained by multiplying by 1/(1-
rd
7) (see Equation (53.40)). SO,

z _ S i ).n
TR S [Eo )
= > dyz"

n=0
We now need to find the form of the coefficient of z" in the expansion of

z
a(1-z/a)*(1-2)

Expanding this, we get:

== 3 (z/a) 3 (z/a) ¥ 7'
3(1_2/3)2(1_2) a i i>0 i>0
So,
1 n-1 1 n-1-i 1
d, = g [—,_ Z e
i=o| @ j=0 @
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1 | n Va)' -1
== |- ezl
1l-a [a” (]Ja)—l]
_ n a(/a"-1)

n

Whena=1,d, = 3 i=n(n+1)/2. Observe that the recurrence for d, is:
i=0

n
dn = dn—l + —,n=1
an

Since the general form of the particular solution is not known when g(n) = n/a",
it would be difficult to obtain the solution for d,, using the characteristic roots
method. O

Example 53.21 An alternate approach to obtain the power series form of G(z) =
(> bnz")/(1-az) (see Example 53.19) is:

n=1

G(2) = (3 bnz")/(1-az)

n=1

= (b3 nz")/(1-az).

n=0
_ bz
(1-2)*(1-az)
When a# 1, we obtain:
6 =228, €
(1-2) 1-az

Solving for A, B, and C, we obtain:

__b
(1-a)?
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_ Az + B ., C
T (1=7)2 72 l-az
(1-2) (1-2)

G@)

=AYiZ +BY (i+1)Z + CTa'Z
i=0 i=0 i20

The coefficient of z" istherefore:

t(n)=An+ B(n+1)+ Ca"

b ab ab n
= n- n+1) + a
car war VT ay
_an)
_bn _ ab(la; La#1,n20
l-a  (1-a)
Whena=1,
bz
Z =
(2) 127

- %Zi (i+1)z (Example53.15)
i=>0

So, f (n) = bn(n+1)/2, n=0, a=1. O
Example 53.22 Consider the recurrence:
f(n) = 5f(n-1) - 6f(n-2) + 2n, =2
and
f(0)=f(1)=0
Let G(2) = Zcizi be the generating function for f. So, f (n) = ¢,, f(n-1) = ¢4—1
and f(n-2) :i ?:?, —». Therefore:
Cy = 5Ch-1 — 6CH—p + 2N, N=2

or
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cnZ" = 5¢,-12" - 6CH 02" + 2nZ", Nn=2
Summing up for nfrom 2 to o yields:

S cnz" =523 12" 1 - 6225 cy 2" 2 + T 2n2"
n=2 n=2 n=2 n=2

or

G(2)-c12-Cq = 52(G (2)-Co) - 62°G(2) + ¥ 2nz"

n=2
Substituting ¢, = ¢ = 0, we get:

G(2)(1-5z+62%) = 5 2nz"

n=2
or
> 2nz"
o0 = s
=22pqriz_riﬂ

j=2

= 3 2j2[35 37 - 25 2'Z]

j=2 i>0 i=20

The coefficient ¢, of z" is now seen to be:

n . n .
ch= 5 6j3"T - 5 4j20
j=2 j=2

n . n .
=635 (j/3) -4 2" j /2
j=2 j=2

From Example 53.20, we know that:

and
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.
L=-N _pon_p-1
P e

Cy = —3n-4.5+4.5* 3"-2* 3"+4n+8-8* 2"+2* 2"
= n+3.5+2.5* 3"-6* 2"

So, f (n) = n+3.5+2.5* 3"-6* 2", n=0. O
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