
CHAPTER 20BACKTRACKING (ON THEWEB)

BIRD'S-EYE VIEW
A surefire way to find the answer to a problem is to make a list of all candidate an-
swers, examine each, and following the examination of all or some of the candidates,
declare the identified answer. In theory, this approach should work whenever the
candidate list is finite and when it is possible to identify the answer following the
examination of all or some of the candidates. In practice, the approach isn’t very
useful because the number of candidates is often much too large (say, exponential,
or even factorial in the instance size). As a result, even the fastest computers are
able to complete the examination of the candidates in reasonable time only when
the instance size is quite small.

Backtracking and branch and bound are two ways to make a systematic exam-
ination of the candidate list. Such a systematic examination of the candidate list
often results in significant run-time savings in both the worst and expected cases.
In fact, these methods often enable us to eliminate the explicit examination of a
large subset of the candidates while still guaranteeing that the answer will be found
if the algorithm is run to termination. As a result, these methods are often able to
obtain solutions to large instances.

This chapter focuses on the backtracking method. This method is used to obtain
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algorithms for the container-loading, knapsack, max-clique, traveling-salesperson,
and board-permutation problems. Each of these applications is an NP-hard prob-
lem. When we need an optimal solution (versus a solution that is close to optimal)
for an NP-hard problem, a systematic search of the candidate list using either back-
tracking or branch and bound often results in the best algorithm.
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Backtracking is a systematic way to search for the solution to a problem. The
solution provided in Section 8.5.6 for the rat-in-a-maze problem utilized this tech-
nique. In backtracking we begin by defining a solution space for the problem.
This space must include at least one (optimal) solution to the problem. In the
case of the rat-in-a-maze problem, we may define the solution space to consist of
all paths from the entrance to the exit. For the case of the 0/1 knapsack problem
(see Sections 17.3.2 and 19.2.1) with n objects, a reasonable choice for the solution
space is the set of 2n 0/1 vectors of size n. This set represents all possible ways to
assign the values 0 and 1 to x. When n = 3, the solution space is {(0,0,0), (0,1,0),
(0,0,1), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1)}.

The next step is to organize the solution space so that it can be searched easily.
The typical organization is either a graph or a tree. Figure 20.1 shows a graph
organization for a 3 × 3 maze. All paths from the vertex labeled (1,1) to the vertex
labeled (3,3) define an element of the solution space for a 3 × 3 maze. Depending
on the placement of obstacles, some of these paths may be infeasible.

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Figure 20.1 Solution space for a 3 × 3 maze

A tree organization for the three-object 0/1 knapsack solution space appears in
Figure 20.2. The label on an edge from a level i node to a level i + 1 node gives
the value of xi. All paths from the root to a leaf define an element of the solution
space. The path from the root to leaf H defines the solution x = [1,1,1]. Depending
on the values w and c, some or all of the root-to-leaf paths may define infeasible
solutions.
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Figure 20.2 Solution space for a three-object knapsack

Once we have defined an organization for the solution space, this space is
searched in a depth-first manner beginning at a start node—the entrance node
(1,1) in the rat-in-a-maze problem or the root node in the case of the 0/1 knapsack
problem. This start node is both a live node and the E-node (expansion node).
From this E-node, we try to move to a new node. If we can move to a new node
from the current E-node, then we do so. The new node becomes a live node and
also becomes the new E-node. The old E-node remains a live node. If we cannot
move to a new node, the current E-node dies (i.e., it is no longer a live node) and we
move back (i.e., backtrack) to the most recently seen live node that remains. This
live node becomes the new E-node. The search terminates when we have found the
answer or when we run out of live nodes to back up to.

Example 20.1 [Rat in a Maze] Consider the 3 × 3 rat-in-a-maze instance given
by the matrix of Figure 20.3(a). We will search this maze using the solution space
graph of Figure 20.1.

0 0 0 1 1 0 1 1 1
0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0

(a) (b) (c)

Figure 20.3 Mazes

Every path from the entrance of the maze to the exit corresponds to a path
from vertex (1,1) to vertex (3,3) in the graph of Figure 20.1. However, some of the
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(1,1) to (3,3) paths in this graph do not correspond to entrance-to-exit paths in the
example.

The search begins at position (1,1), which is the only live node at this time. It
is also the E-node. To avoid going through this position again, we set maze(1, 1)
to 1. From this position we can move to either (1,2) or (2,1). For the particular
instance we are dealing with, both moves are feasible, as the maze has a 0 at each
position. Suppose we choose to move to (1,2). maze(1, 2) is set to 1 to avoid going
through here again. The status of maze is as in Figure 20.3(b). At this time we
have two live nodes: (1,1) and (1,2). (1,2) becomes the E-node. From the current
E-node three moves are possible in the graph of Figure 20.1. Two of these moves
are infeasible as the maze has a 1 in these positions. The only feasible move is to
(1,3). We move to this position and set maze(1, 3) to 1 to avoid going through here
again. The maze of Figure 20.3(c) is obtained, and (1,3) becomes the E-node. The
graph of Figure 20.1 indicates two possible moves from the new E-node. Neither
of these moves is feasible; so the E-node (1,3), dies and we back up to the most
recently seen live node, which is (1,2). No feasible moves from here remain, and
this node also dies. The only remaining live node is (1,1). This node becomes the
E-node again, and we have an untried move that gets us to position (2,1). The live
nodes now are (1,1) and (2,1). Continuing in this way, we reach position (3,3). At
this time the list of live nodes is (1,1), (2,1), (3,1), (3,2), (3,3). This list also gives
the path to the exit.

Program 8.15 is a backtracking algorithm to find a path in a maze.

Example 20.2 [0/1 Knapsack] Consider the knapsack instance n = 3, w = [20, 15,
15], p = [40, 25, 25], and c = 30. We search the tree of Figure 20.2, beginning at
the root. The root is the only live node at this time. It is also the E-node. From
here we can move to either B or C. Suppose we move to B. The live nodes now are
A and B. B is the current E-node. At node B the remaining capacity r is 10, and
the profit earned cp is 40. From B we can move to either D or E. The move to D
is infeasible, as the capacity needed to move there is w2 = 15. The move to E is
feasible, as no capacity is used in this move. E becomes the new E-node. The live
nodes at this time are A, B, and E. At node E, r = 10 and cp = 40. From E we
have two possible moves (i.e., to nodes J and K). The move to node J is infeasible,
while that to K is not. Node K becomes the new E-node. Since K is a leaf, we
have a feasible solution. This solution has profit value cp = 40. The values of x
are determined by the path from the root to K. This path (A, B, E, K) is also the
live-node sequence at this time. Since we cannot expand K further, this node dies
and we back up to E. Since we cannot expand E further, it dies too.

Next we back up to B, which also dies, and A becomes the E-node again. It can
be expanded further, and node C is reached. Now r = 30 and cp = 0. From C we
can move to either F or G. Suppose we move to F. F becomes the new E-node, and
the live nodes are A, C, and F. At F, r = 15 and cp = 25. From F we can move
to either L or M. Suppose we move to L. Now r = 0 and cp = 50. Since L is a leaf
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and it represents a better feasible solution than the best found so far (i.e., the one
at node K), we remember this feasible solution as the best solution. Node L dies,
and we back up to node F. Continuing in this way, we search the entire tree. The
best solution found during the search is the optimal one.

Example 20.3 [Traveling Salesperson] In this problem we are given an n vertex
network (either directed or undirected) and are to find a cycle of minimum cost
that includes all n vertices. Any cycle that includes all n vertices of a network is
called a tour. In the traveling-salesperson problem, we are to find a least-cost
tour.

A four-vertex undirected network appears in Figure 20.4. Some of the tours in
this network are 1,2,4,3,1; 1,3,2,4,1; and 1,4,3,2,1. The tours 2,4,3,1,2; 4,3,1,2,4;
and 3,1,2,4,3 are the same as the tour 1,2,4,3,1, whereas the tour 1,3,4,2,1 is the
reverse of the tour 1,2,4,3,1. The cost of the tour 1,2,4,3,1 is 66; that of 1,3,2,4,1 is
25; and that of 1,4,3,2,1 is 59. 1,3,2,4,1 is the least-cost tour in the network.

1 2

43

30

6 104

20

5

Figure 20.4 A four-vertex network

As the name suggests, the traveling-salesperson problem may be used to model
the territory covered by a salesperson. The vertices represent the cities (including
the home base) in the salesperson’s territory. The edge costs give the travel time
(or cost) required to go between two cities. A tour represents the path taken by the
salesperson when visiting all cities in his/her territory and then returning home.

We can use the traveling-salesperson problem to model other problems. Suppose
we are to drill a number of holes on a sheet of metal or on a printed circuit board.
The location of the holes is known. The holes are drilled by a robot drill that begins
at its base position, travels to each hole location, drills, and then returns to its base.
The total time is that to drill all holes plus the drill travel time. The time to drill
all holes is independent of the order in which they are drilled. However, the drill
travel time is a function of the length of the tour used by the drill. Therefore, we
wish to find a tour of minimum length.

As another example, consider a manufacturing environment in which a particular
machine is to be used to manufacture n different items. The items are manufactured
repeatedly by using a manufacturing cycle. In one cycle all n items are manufactured
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in sequence, and then we are ready to begin the next cycle. The next cycle uses
the same manufacturing sequence. For example, if the machine is used to paint red,
white, and blue cars in this sequence, then following the painting of the blue cars,
we begin the sequence again with the red cars. The cost of one cycle includes the
actual cost of manufacturing the items plus the cost of changing over from one item
to the next. Although the actual cost of manufacturing the items is independent of
the sequence in which the items are manufactured, the changeover cost depends on
the sequence. To minimize the changeover cost, we may define a directed graph in
which the vertices represent the items, and the edge (i, j) has a cost equal to that
of changing from the manufacture of item i to that of item j. A minimum-cost tour
defines a least-cost manufacturing cycle.

Since a tour is a cycle that includes all vertices, we may pick any vertex as the
start (and hence the end). Let us arbitrarily select vertex 1 as the start and end
vertex. Each tour is then described by the vertex sequence 1, v2, · · ·, vn, 1 when v2,
· · ·, vn is a permutation of (2, 3, · · ·, n). The possible tours may be described by a
tree in which each root-to-leaf path defines a tour. Figure 20.5 shows such a tree for
the case of a four-vertex network. The edge labels on the path from the root to a
leaf define a tour (when 1 is appended). For example, the path to node L represents
the tour 1,2,3,4,1, while the path to node O represents the tour 1,3,4,2,1. Every
tour in the network is represented by exactly one root-to-leaf path in the tree. As
a result, the number of leaves in the tree is (n − 1)!.

L M N O P Q

F G H I J K

C D E

B

A

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

Figure 20.5 Solution space tree for a four-vertex network

A backtracking algorithm will find a minimum-cost tour by searching the solu-
tion space tree in a depth-first manner, beginning at the root. A possible search
using Figure 20.5 would move from node A to B to C to F to L. At L the tour
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1,2,3,4,1 is recorded as the best tour seen so far. Its cost is 59. From L we back-
track to the live node F. As F has no unexamined children, it is killed and we
backtrack to node C. C becomes the E-node, and we move forward to G and then
to M. We have now constructed the tour 1,2,4,3,1 whose cost is 66. Since this tour
isn’t superior to the best tour we have, we discard the new tour and backtrack to
G, then C, and then B. From B the search moves forward to D and then to H and
N. The tour 1,3,2,4,1 defined at N has cost 25 and is better than the previous best
tour. We save 1,3,2,4,1 as the best tour seen so far. From N the search backtracks
to H and then to D. At D we can again move forward. We reach node O. Continuing
in this way, we search the entire tree; 1,3,2,4,1 is the least-cost tour.

When the problem we are to solve asks for a subset of n elements that optimizes
some function, the solution space tree is called a subset tree. So the solution
space tree for an n-object 0/1 knapsack instance is a subset tree. Such a tree has
2n leaf nodes and 2n+1 − 1 total nodes. As a result, every algorithm that moves
through all nodes in the tree must spend Ω(2n) time. When the problem asks for
an n-element permutation that optimizes some function, the solution space tree
is a permutation tree. Such a tree has n! leaves, and so every algorithm that
moves through all nodes of the tree must spend Ω(n!) time. Note that the tree
of Figure 20.5 is for the case when we are looking for the best permutation of the
vertices {2, 3, 4}. Vertex 1 is the first and last vertex of the tour.

We can speed the search for an optimal solution by determining whether or not
a newly reached node can possibly lead to a solution better than the best found so
far. If it cannot, then there is no point moving into any of its subtrees and the node
may be immediately killed. Strategies that are used to kill live nodes are called
bounding functions. In Example 20.2 we used the following bounding function:
Kill nodes that represent infeasible solutions. For the traveling-salesperson problem,
we could use this bounding function: If the cost of the partial tour built so far isn’t
less than that of the best tour found to this point, kill the current node. If we use
this bounding function on the example of Figure 20.4, then by the time we reach
node I of Figure 20.5, we have found the tour 1,3,2,4,1 with cost 25. At node I the
partial tour is 1,3,4 whose cost is 26. By completing this partial tour into a full
tour, we cannot get a tour with cost less than 25. There is no point in searching
the subtree with root I.Summary
The steps involved in the backtracking method are

1. Define a solution space that includes the answer to the problem instance.

2. Organize this space in a manner suitable for search.

3. Search the space in a depth-first manner using bounding functions to avoid
moving into subspaces that cannot possibly lead to the answer.
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An interesting feature of backtracking implementations is that the solution space

is generated while the search is conducted. At any time during the search, only the

path from the start node to the current E-node is saved. As a result, the space needs
of a backtracking algorithm are typically O(length of longest path from the start
node). This feature is important because the size of the solution space organization
is usually exponential or factorial in length of the longest path. So the solution
space organization needs excessive memory if stored in its entirety.EXERCISES

1. Consider the 0/1 knapsack instance: n = 4, w = [20, 25, 15, 35], p = [40, 49,
25, 60], and c = 62.

(a) Draw the solution space tree for 0/1 knapsack instances with n = 4.

(b) Trace the working of a backtracking algorithm on this tree (use the ps,
ws, and c values given in this exercise). Clearly label the nodes in the
order in which the backtrack algorithm first reaches them. Identify the
nodes that do not get reached.

2. (a) Draw the solution space tree for traveling-salesperson instances with n
= 5.

(b) Trace the working of a backtracking algorithm on this tree (use the in-
stance of Figure 20.6). Clearly label the nodes in the order in which the
backtrack algorithm first reaches them. Identify the nodes that do not
get reached.

1 2

43

5

8

6 104

6

20

5

2

Figure 20.6 Instance for Exercise 2.

3. Mary and Joe practice tennis together every Saturday. They begin with a
basket of 120 balls each and continue until both baskets are empty. Then
they need to pick up 240 balls from around the tennis court. Mary and Joe
pick up the balls by retrieving the empty baskets, filling them with balls, and
returning the full baskets to their original positions. Mary picks up the balls
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on her side of the net, while Joe picks up the remaining balls. Describe how
the traveling-salesperson problem can help Mary and Joe determine the order
in which they should pick up balls so that they walk the minimum distance.20.2 APPLICATIONS

20.2.1 Container LoadingThe Problem
In Section 17.3.1 we considered the problem of loading a ship with the maximum
number of containers. Now we will consider a variant of this problem in which we
have two ships and n containers. The capacity of the first ship is c1, and that of
the second c2. wi is the weight of container i, and

∑n

i=1
wi ≤ c1 + c2. We wish to

determine whether there is a way to load all n containers. In case there is, then
such a loading is to be determined.

Example 20.4 When n = 3, c1 = c2 = 50, and w = [10, 40, 40], we can load
containers 1 and 2 onto the first ship and container 3 onto the second ship. If the
weights are [20, 40, 40], then we cannot load the containers onto the ships.

When
∑n

i=1
wi = c1+c2, the two-ship-loading problem is equivalent to the sum-

of-subset problem in which we are given n numbers and asked to find a subset (if
it exists) that sums to c1. When c1 = c2 and

∑n

i=1
wi = 2c1, the two-ship-loading

problem is equivalent to the partition problem. In this latter problem, we are
given n numbers ai, 1 ≤ i ≤ n and asked to find a subset (if it exists) that sums to
(
∑n

i=1
ai)/2. Both the partition and sum-of-subset problems are NP-hard problems

and remain NP-hard even if the instances are limited to integer numbers. So we do
not expect to solve the two-ship-loading problem in polynomial time.

You may verify that the following strategy to load the two ships succeeds when-
ever there is a way to load all n containers: (1) load the first ship as close to its
capacity as possible and (2) put the remaining containers into the second ship. To
load the first ship as close to capacity as possible, we need to select a subset of
containers with total weight as close to c1 as possible. This selection can be made
by solving the 0/1 knapsack problem

maximize

n∑

i=1

wixi

subject to the constraints:

n∑

i=1

wixi ≤ c1 and xi ∈ {0, 1}, 1 ≤ i ≤ n
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When the weights are integer, we can use the dynamic-programming solution of
Section 19.2.1 to determine the best loading of the first ship. The time needed is
O(min{c1, 2

n}) with the tuple method. We can use the backtracking method to de-
velop an O(2n) algorithm that can outperform the dynamic-programming algorithm
on some (though not all) instances.First Baktraking Solution
Since we are to find a subset of the weights with sum as close to c1 as possible, we
use a subset space that may be organized into a binary tree as in Figure 20.2. The
solution space will be searched in a depth-first manner for the best solution. We use
a bounding function to prevent the expansion of nodes that cannot possibly lead to
the answer. If Z is a node on level j + 1 of the tree, then the path from the root to
Z defines values for xi, 1 ≤ i ≤ j. Using these values, define cw (current weight) to

be
∑j

i=1
wixi. If cw > c1, then the subtree with root Z cannot contain a feasible

solution. We can use this test as our bounding function. (We could augment this
test with a test to see whether cw = c1. If it does, then we can terminate the search
for the subset with the sum closest to c1. We do not do this augmentation in our
discussion and codes.) Define a node to be infeasible iff its cw value exceeds c1.

Example 20.5 Suppose that n = 4, w = [8, 6, 2, 3], and c1 = 12. The solution
space tree is the tree of Figure 20.2 with one more level of nodes. The search begins
at the root A, and cw = 0. If we move to the left child B, then cw = 8, which is ≤
c1 = 12. The subtree with root B contains a feasible node, and we move to node B.
From node B we do not move to node D because cw + w2 > c1; therefore, no leaves
in this subtree represent feasible solutions. Instead, we move directly to node E.
This move doesn’t change cw. The next move is to node J as the cw value here is
10. The left child of J has a cw value of 13, which exceeds c1, so the search does
not move there. Instead, we make a move to the right child of J, which is a leaf. At
this point we have found a subset with weight cw = 10. The xi values are obtained
from the path from A to the right child of J. These xi values are [1, 0, 1, 0].

The backtrack algorithm now backs up to J and then to E. From E we can again
move down the tree to node K where cw = 8. Its left subtree has cw value 11,
and we move there. Since we have reached a leaf, we check whether the cw value
exceeds the best found so far. It does, so this leaf represents a better solution than
[1, 0, 1, 0]. The path to this leaf has x values [1, 0, 0, 1].

From this leaf we back up to node K. Now we can move to K’s right child, which
is a leaf with cw = 8. This leaf doesn’t represent a better solution than the best
found so far, so we back up to K, E, B, and A. The root is the first node reached
from which we can move down again. The algorithm moves to C and searches this
subtree.

Program 20.1 is the backtracking algorithm that results when we use the pre-
ceding bounding function. This algorithm employs the global variables numberOf-
Containers, weight, capacity, weightOfCurrentLoading, and maxWeightSoFar.
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void rLoad(int currentLevel)

{// search from a node at currentLevel

if (currentLevel > numberOfContainers)

{// at a leaf

if (weightOfCurrentLoading > maxWeightSoFar)

maxWeightSoFar = weightOfCurrentLoading;

return;

}

// not at a leaf, check subtrees

if (weightOfCurrentLoading + weight[currentLevel] <= capacity)

{// try left subtree; i.e., x[currentLevel] = 1

weightOfCurrentLoading += weight[currentLevel];

rLoad(currentLevel + 1);

weightOfCurrentLoading -= weight[currentLevel];

}

rLoad(currentLevel + 1); // try right subtree

}

Program 20.1 First backtracking code for the loading problem

The container weights are weight[1:numberOfContainers. The invocation rLoad(1)

returns the maximum subset sum that is ≤ capacity, but does not find the subset
that has this weight. We will later refine the code so as to find this subset.

rLoad(currentLevel) explores the subtree rooted at an implicitly specified
node that is at the level currentLevel. If currentLevel > numberOfContainers,
we have reached a leaf node. The solution defined by this leaf has weight weight-
OfCurrentLoading, which is guaranteed to be ≤ capacity, as the search does
not move to infeasible nodes. If weightOfCurrentLoading > maxWeightSoFar,
the value of the best solution found so far is updated. When currentLevel ≤
numberOfContainers, we are at a node Z that has two children. The left child
represents the case x[currentLevel] = 1. We can move here only if weight-

OfCurrentLoading+weight[currentLevel] ≤ capacity. When we move to the
left child, weightOfCurrentLoading increases by weight[currentLevel] and we
reach a level currentLevel+1 node. The subtree of which this node is the root
is searched recursively. Upon completion of this search, we return to node Z. To
get its weightOfCurrentLoading value, we need to decrease the current weightOf-
CurrentLoading by weight[currentLevel]. The right subtree of Z has not been
searched. Since this subtree represents the case x[currentLevel] = 0, the search
may move there without a feasibility check because the right child of a feasible node
is always feasible.

Notice that the solution space tree is not constructed explicitly by rLoad. The
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function rLoad spends Θ(1) time at each node that it reaches. The number of nodes
reached is O(2n), so its complexity is O(2n). The function also uses Θ(n) space for
the recursion stack.Seond Baktraking Solution
We can improve the expected performance of function rLoad by not moving into
right subtrees that cannot possibly contain better solutions than the best found so
far. Let Z be a node at level i of the solution space tree. No leaf in the subtree with
root Z has weight more than weightOfCurrentLoading+remainingWeight where
remainingWeight =

∑n

j=i+1
weight[j] is the weight of the remaining containers (n

is the number of containers). Therefore, when

weightOfCurrentLoading + remainingWeight ≤ maxWeightSoFar

there is no need to search the right subtree of Z.

Example 20.6 Let n, w, and c1 be as in Example 20.5. With the new bounding
function, the search proceeds as with the old one until we reach the first leaf (which
is the right child of J). maxWeightSoFar is set to 10; we back up to E and then move
down to the left child of K where maxWeightSoFar is updated to 11. We do not
move to the right child of K, because at this right child weightOfCurrentLoading

= 8, remainingWeight = 0, and weightOfCurrentLoading+remainingWeight ≤
maxWeightSoFar. Instead, we back up to node A. Again, we do not move to the
right child C, because at C weightOfCurrentLoading = 0, remainingWeight =
11, and weightOfCurrentLoading+remainingWeight ≤ maxWeightSoFar.

The strengthened bounding function has avoided the search of the right subtree
of A as well as the right subtree of K.

When we use the strengthened bounding function, we get the code of Pro-
gram 20.2. This code assumes that a global variable remainingWeight, whose
initial value is the sum of the container eights, has been added. Notice that the new
code does not check whether a reached leaf has more weight than the previous best.
Such a check is unnecessary because the strengthened bounding function disallows
moves to nodes that cannot yield a better solution. As a result, each leaf that is
reached represents a better solution than all previously reached leaves. Although
the complexity of the new code remains O(2n), it is expected to examine fewer
nodes than Program 20.1 examines.Finding the Best Subset
To determine the subset of containers that has weight closest to capacity, it is
necessary to add code to remember the best subset found so far. To remember this
subset, we employ a one-dimensional array bestLoadingSoFar. Container i is in the
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void rLoad(int currentLevel)

{// search from a node at currentLevel

if (currentLevel > numberOfContainers)

{// at a leaf

maxWeightSoFar = weightOfCurrentLoading;

return;

}

// not at a leaf, check subtrees

remainingWeight -= weight[currentLevel];

if (weightOfCurrentLoading + weight[currentLevel] <= capacity)

{// try left subtree

weightOfCurrentLoading += weight[currentLevel];

rLoad(currentLevel + 1);

weightOfCurrentLoading -= weight[currentLevel];

}

if (weightOfCurrentLoading + remainingWeight > maxWeightSoFar)

// try right subtree

rLoad(currentLevel+1);

remainingWeight += weight[currentLevel];

}

Program 20.2 Refinement of Program 20.1

best subset iff bestLoadingSoFar[i] = 1. The new code appears in Programs 20.3
and 20.4.

This code employs two additional global variables currentLoading and best-

LoadingSoFar. Both of these variables are one-dimensional arrays of type int

(Boolean arrays could be used instead). The array currentLoading is used to
record the path from the search tree root to the current node (i.e., it saves the
xi values on this path), and bestLoadingSoFar records the best solution found so
far. Whenever a leaf with a better value is reached, bestLoadingSoFar is updated
to represent the path from the root to this leaf. The 1s on this path identify
the containers to be loaded. Space for the array currentLoading is allocated by
maxLoading.

Since bestLoadingSoFar is updated O(2n) times, the complexity of rLoad is
O(n2n). This complexity can be reduced to O(2n) with one of the following strate-
gies:

1. First run the code of Program 20.2 to determine the weight of the best loading.
Let this weight be maxWeight. Then run a modified version of Programs 20.3
and 20.4. The modified version begins with maxWeightSoFar = maxWeight,
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int maxLoading(int *theWeight, int theNumberOfContainers,

int theCapacity, int *bestLoading)

{// theWeight[1:theNumberOfContainers] gives container weights

// theCapacity is capacity of ship

// bestLoading[1:theNumberOfContainers] is solution array

// Return weight of max loading.

// initialize global variables

numberOfContainers = theNumberOfContainers;

weight = theWeight;

capacity = theCapacity;

weightOfCurrentLoading = 0;

maxWeightSoFar = 0;

currentLoading = new int [numberOfContainers + 1];

bestLoadingSoFar = bestLoading;

// initialize remainingWeight to sum of all weights

for (int i = 1; i <= numberOfContainers; i++)

remainingWeight += weight[i];

// compute weight of best loading

rLoad(1);

return maxWeightSoFar;

}

Program 20.3 Preprocessor for code to report best loading

enters right subtrees so long as weightOfCurrentLoading+remainingWeight
≥ maxWeightSoFar, and terminates the first time a leaf is reached (i.e., the
first time currentLevel > numberOfContainers).

2. Modify the code of Program 20.4 so that the path from the root to the best
leaf encountered so far is saved incrementally. Specifically, if we are at a
level i node, then the path to the best leaf is given by currentLoading[j],
1 ≤ j < i, and bestLoadingSoFar[j], j ≤ i ≤ numberOfContainers. This
way, each time the algorithm backs up by one level, one xi is stored in
bestLoadingSoFar. Since the number of times the algorithm backs up is
O(2n), the additional cost is O(2n).An Improved Iterative Version

The code of Programs 20.3 and 20.4 can be improved to reduce its space require-
ments. We can eliminate the recursion-stack space, which is Θ(n), as the array
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void rLoad(int currentLevel)

{// search from a node at currentLevel

if (currentLevel > numberOfContainers)

{// at a leaf, save better solution

for (int j = 1; j <= numberOfContainers; j++)

bestLoadingSoFar[j] = currentLoading[j];

maxWeightSoFar = weightOfCurrentLoading;

return;

}

// not at a leaf, check subtrees

remainingWeight -= weight[currentLevel];

if (weightOfCurrentLoading + weight[currentLevel] <= capacity)

{// try left subtree

currentLoading[currentLevel] = 1;

weightOfCurrentLoading += weight[currentLevel];

rLoad(currentLevel + 1);

weightOfCurrentLoading -= weight[currentLevel];

}

if (weightOfCurrentLoading + remainingWeight > maxWeightSoFar)

{

currentLoading[currentLevel] = 0; // try right subtree

rLoad(currentLevel + 1);

}

remainingWeight += weight[currentLevel];

}

Program 20.4 Backtracking code to report best loading

currentLoading retains all the information needed to move around in the tree. As
illustrated in Example 20.5, from any node in the solution space tree, our algorithm
makes a series of left-child moves until no more can be made. Then if a leaf has been
reached, the best solution is updated. Otherwise, it tries to move to a right child.
When either a leaf is reached or a right-child move is not worthwhile, the algorithm
moves back up the tree to a node from which a possibly fruitful right child move can
be made. This node has the property that it is the nearest node on the path from
the root that has currentLoading[i] = 1. If a move to the right child is fruitful,
it is made and we again attempt to make a series of left-child moves. If the move to
the right child is not fruitful, we back up to the next node with currentLoading[i]

= 1. This motion of the algorithm through the tree can be coded as an iterative
algorithm as in Program 20.5. Unlike the recursive code, this code moves to a right
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child before checking whether it should. If the move should not have been made,
the code backs up. The time complexity of the iterative code is the same as that of
Programs 20.3 and 20.4.

20.2.2 0/1 Knapsack ProblemBaktraking Solution
The 0/1 knapsack problem is an NP-hard problem for which we considered greedy
heuristics in Section 17.3.2 and developed dynamic-programming algorithms in Sec-
tion 19.2.1. In this section we develop a backtracking algorithm for this problem.
Since we are to select a subset of objects for inclusion into the knapsack such that
the profit obtained is maximum, the solution space is organized as a subset tree
(Figure 20.2). The backtracking algorithm is very similar to that for the loading
problem of Section 20.2.1. As in the development of Section 20.2.1, let us initially
develop a recursive algorithm that finds the maximum profit obtainable. Later, this
algorithm can be refined to code that finds the subset of objects to be included in
the knapsack so as to earn this much profit.

As in the case of Program 20.2, left branches are taken whenever the left child
represents a feasible node; right branches are taken when there is a possibility that
the right subtree contains a better solution than the best found so far. A simple
way to decide whether or not to move into the right subtree is to check whether
the sum of the profit earned at the current node and the profits of the objects yet
to be considered exceeds the value of the best solution found so far. If not, the
right subtree need not be searched. A more effective way is to order the remaining
objects by profit density (pi/wi), fill the remaining capacity by putting in objects in
decreasing order of density, and use a fraction of the first such object that doesn’t
fit.

Example 20.7 Consider the instance n = 4, c = 7, p = [9, 10, 7, 4], and w = [3,
5, 2, 1]. The profit densities of these objects are [3, 2, 3.5, 4]. When the knapsack
is packed in decreasing order of density, object 4 is packed first, then object 3
is packed, and then object 1. Following the packing of these three objects, the
available capacity is 1. This capacity is adequate for 0.2 of object 2. Putting in
0.2 of this object yields a profit of 2. The solution constructed is x = [1, 0.2, 1, 1],
and the corresponding profit is 22. Although this solution is infeasible (x2 is 0.2
while it should be either 0 or 1), its value 22 can be shown to be no less than the
best feasible solution. Therefore, we know that the 0/1 knapsack instance has no
solution with value more than 22.

The solution space tree is that of Figure 20.2 with one additional level of nodes.
When we are at node B of the solution space tree, x1 = 1 and the profit earned
so far is cp = 9. The capacity used at this node is cw = 3. The best additional
profit we can earn is by filling the remaining capacity cleft = c − cw = 4 in order
of density. That is, first put in object 4, then object 3, and then 0.2 of object 2.
Therefore, the value of the best solution in the subtree A is at most 22.
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int maxLoading(int *weight, int numberOfContainers, int capacity,

int *bestLoading)

{// weight[1:numberOfContainers] are container weights

// capacity ship capacity

// bestLoading[1:numberOfContainers] is solution array

// Return weight of max loading.

// initialize for root

int currentLevel = 1;

int *currentLoading = new int [numberOfContainers + 1];

// currentLoading[1:i-1] is path to current node

int maxWeightSoFar = 0;

int weightOfCurrentLoading = 0;

int remainingWeight = 0;

for (int j = 1; j <= numberOfContainers; j++)

remainingWeight += weight[j];

// search the tree

while (true)

{// move down and left as far as possible

while (currentLevel <= numberOfContainers &&

weightOfCurrentLoading + weight[currentLevel] <= capacity)

{// move to left child

remainingWeight -= weight[currentLevel];

weightOfCurrentLoading += weight[currentLevel];

currentLoading[currentLevel] = 1;

currentLevel++;

}

if (currentLevel > numberOfContainers)

{// leaf reached

for (int j = 1; j <= numberOfContainers; j++)

bestLoading[j] = currentLoading[j];

maxWeightSoFar = weightOfCurrentLoading;

}

else

{// move to right child

remainingWeight -= weight[currentLevel];

currentLoading[currentLevel] = 0;

currentLevel++;

}

Program 20.5 Iterative loading code (continues)
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// back up if necessary

while (weightOfCurrentLoading + remainingWeight <= maxWeightSoFar)

{// this subtree does not have a better leaf, back up

currentLevel--;

while (currentLevel > 0 && currentLoading[currentLevel] == 0)

{// back up from a right child

remainingWeight += weight[currentLevel];

currentLevel--;

}

if (currentLevel == 0)

return maxWeightSoFar;

// move to right subtree

currentLoading[currentLevel] = 0;

weightOfCurrentLoading -= weight[currentLevel];

currentLevel++;

}

}

}

Program 20.5 Iterative loading code (concluded)

When we are at node C, cp = cw = 0 and cleft = c = 7. Loading the remaining
capacity by density, objects 4 and 3 are packed and then 0.8 of object 2 is packed.
This packing yields a profit of 19. No node in subtree C can yield greater profit.

At node E, cp = 9, cw = 3, and cleft = 4. Only objects 3 and 4 remain to
be considered. When these objects are considered in order of density, object 4 is
packed first and then object 3. So no node in subtree E has value more than cp +
4 + 7 = 20. If we have already found a solution with value 20 or more, there is no
point in searching subtree E.

This bounding function is easy to implement if the objects are in decreasing
order of profit density.C++ Implementation
The backtracking solution for the knapsack problem employs the struct element,
whose data members are id (element identifier, an int) and profitDensity, (a
double). The struct element defines a type conversion to double that returns the
profitDensity value. Therefore, sorting a collection of elements results in the
collection being ordered in ascending order of profit density. The global variables
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used by our recursive backtracking code are given in Program 20.6.

double capacity;

int numberOfObjects;

double *weight; // weight[1:numberOfObjects] --> object weights

double *profit;

double weightOfCurrentPacking;

double profitFromCurrentPacking;

double maxProfitSoFar;

Program 20.6 Global variables for knapsack backtracking code

The function knapsack (Program 20.7) returns the value of the best filling for
the knapsack. This function first creates an array q of type element that contains
the profit density of all objects. Next we sort the array q into ascending order of
density using mergeSort (Program 18.3). Then, using this ordering information,
the global variables profit and weight are set so that profit[i]/weight[i] ≥
profit[i-1]/weight[i-1]. With all this work done, the recursive function rKnap

(Program 20.8), which implements the backtracking method, is invoked.
Notice the similarity between the functions rknap and rLoad (Program 20.2).

Program 20.9 gives the code for the bounding function. Notice that Program 20.8
computes the bounding function only for right-child moves. For left-child moves,
the bounding function value at the left child is the same as at its parent.Complexity Analysis
The complexity of rKnap is O(2n), even though the bounding function whose com-
plexity is O(n) is computed at O(2n) right children. To arrive at this complex-
ity note that if, in the computation of the bounding function, the while loop of
profitBound is entered q times, then this computation of the bounding function
is followed by q left-child moves. So over the entire run of rKnap, the while loop
of profitBound cannot be entered more times than the number of left-child moves
that are made. This number is O(2n). Therefore, the total time spent computing
the bounding function is O(2n).

20.2.3 Max CliqueProblem Desription
A subset U of the vertices of an undirected graph G defines a complete subgraph

iff for every u and v in U , (u, v) is an edge of G. The size of a subgraph is the
number of vertices in it. A complete subgraph is a clique of G iff it is not contained
in a larger complete subgraph of G. A max clique is a clique of maximum size.
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double knapsack(double *theProfit, double *theWeight,

int theNumberOfObjects, double theCapacity)

{// theProfit[1:theNumberOfObjects] is array of object profits

// theWeight[1:theNumberOfObjects] is array of object weights

// theCapacity is knapsack capacity

// Return profit of best filling.

// set global variables

capacity = theCapacity;

numberOfObjects = theNumberOfObjects;

weightOfCurrentPacking = 0.0;

profitFromCurrentPacking = 0.0;

maxProfitSoFar = 0.0;

// define an element array for profit densities

element *q = new element [numberOfObjects];

// set up densities in q[0:n-1]

for (int i = 1; i <= numberOfObjects; i++)

q[i - 1] = element(i, theProfit[i] / theWeight[i]);

// sort into increasing density order

mergeSort(q, numberOfObjects);

// initialize remaining globals

profit = new double [numberOfObjects + 1];

weight = new double [numberOfObjects + 1];

for (int i = 1; i <= numberOfObjects; i++)

{// profits and weights in decreasing density order

profit[i] = theProfit[q[numberOfObjects - i].id];

weight[i] = theWeight[q[numberOfObjects - i].id];

}

rKnap(1); // compute max profit

return maxProfitSoFar;

}

Program 20.7 The function knapsack

Example 20.8 In the graph of Figure 20.7(a), the subset {1,2} defines a complete
subgraph of size 2. This subgraph is not a clique, as it is contained in a larger
complete subgraph (i.e., the one defined by {1,2,5}). {1,2,5} defines a max clique
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void rKnap(int currentLevel)

{// search from a node at currentLevel

if (currentLevel > numberOfObjects)

{// at a leaf

maxProfitSoFar = profitFromCurrentPacking;

return;

}

// not at a leaf, check subtrees

if (weightOfCurrentPacking + weight[currentLevel] <= capacity)

{// try left subtree

weightOfCurrentPacking += weight[currentLevel];

profitFromCurrentPacking += profit[currentLevel];

rKnap(currentLevel + 1);

weightOfCurrentPacking -= weight[currentLevel];

profitFromCurrentPacking -= profit[currentLevel];

}

if (profitBound(currentLevel + 1) > maxProfitSoFar)

rKnap(currentLevel + 1); // try right subtree

}

Program 20.8 Recursive backtracking function for 0/1 knapsack problem

of the graph. The vertex sets {1,4,5} and {2,3,5} define other max cliques.

1 2

3

4 5

(a) Graph G

1 2

3

4 5

(b) Its complement G
__

Figure 20.7 A graph and its complement

A subset U of vertices of G defines an empty subgraph iff for every u and v in
U , (u, v) is not an edge of G. The subset is an independent set of G iff the subset
is not contained in a larger subset of vertices that also defines an empty subgraph
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double profitBound(int currentLevel)

{// Bounding function.

// Return upper bound on value of best leaf in subtree.

double remainingCapacity = capacity - weightOfCurrentPacking;

double profitBound = profitFromCurrentPacking;

// fill remaining capacity in order of profit density

while (currentLevel <= numberOfObjects &&

weight[currentLevel] <= remainingCapacity)

{

remainingCapacity -= weight[currentLevel];

profitBound += profit[currentLevel];

currentLevel++;

}

// take fraction of next object

if (currentLevel <= numberOfObjects)

profitBound += profit[currentLevel] / weight[currentLevel]

* remainingCapacity;

return profitBound;

}

Program 20.9 Knapsack bounding function

of G. A max-independent set is an independent set of maximum size. For any
graph G, its complement G is a graph that has the same vertex set. Further,
(u, v) is an edge of G iff (u, v) is not an edge of G.

Example 20.9 The graph of Figure 20.7(b) is the complement of the graph of
Figure 20.7(a), and vice versa. {2,4} defines an empty subgraph of Figure 20.7(a)
and is also a max-independent set of this graph. Although {1,2} defines an empty
subgraph of Figure 20.7(b), {1,2} is not an independent set because {1,2} is con-
tained in {1,2,5}, which also defines an empty subgraph. {1,2,5} is one of the
max-independent sets of Figure 20.7(b).

Notice that if U defines a complete subgraph of G, then U also defines an empty
subgraph of G, and vice versa. So there is a correspondence between the cliques
of G and the independent sets of G. In particular, a max clique of G defines a
max-independent set of G.

The max-clique problem is to find a max clique of the graph G. Similarly,
the max-independent-set problem is to find a max-independent set of G. Both
problems are NP-hard. We can solve one using an algorithm for the other. For
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example, if we have an algorithm that solves the max-clique problem, we can solve
the max-independent-set problem by first computing the complement of the given
graph and then finding a max clique in the complement graph.

Example 20.10 Suppose we have a collection of n animals. We may define a
compatibility graph G that has n vertices. (u, v) is an edge of G iff animals
u and v are compatible. A max clique of G defines a largest subset of mutually
compatible animals.

In Section 19.2.5 we considered the problem of finding a maximum size noncross-
ing subset of nets. We can also formulate this problem as a max-independent-set
problem. Define a graph in which each vertex represents a net. There is an edge
between two vertices iff the corresponding nets cross. So a max-independent set of
the graph corresponds to a maximum size subset of noncrossing nets. When the nets
have one endpoint at the top of the routing channel and the other at the bottom, a
maximum size subset of noncrossing nets can be found in polynomial time (actually
in Θ(n2) time) by using dynamic programming. When the endpoints of a net may
lie anywhere in the plane, no polynomial-time algorithm to find a maximum size
subset of noncrossing nets is known.Baktraking Solution
The max-clique and max-independent-set problems may be solved by O(n2n)-time
backtracking algorithms. In both a subset solution space tree (Figure 20.2) may be
used. Consider the max-clique problem. The recursive backtracking algorithm is
very similar to Program 20.3. When attempting to move to the left child of a level
i node Z of the space tree, we need to verify that there is an edge from vertex i
to every other vertex, j, for which xj = 1 on the path from the root to Z. When
attempting to move to the right child of Z, we need to verify that enough vertices
remain so that there is a possibility of finding a larger clique in the right subtree.C++ Implementation
The backtracking algorithm may be implemented as a member of the class adjacen-
cyGraph (Section 16.7) by first adding the static members currentClique (integer
array, used to store path to current node), maxCliqueFoundSoFar (integer array,
used to save best solution found so far), sizeOfMaxCliqueFoundSoFar (number of
vertices in maxCliqueFoundSoFar), and sizeOfCurrentClique (number of vertices
in currentClique) to this class.

The public method btMaxClique (Program 20.10) initializes the necessary class
data members and then invokes the protected method rClique (Program 20.11).
The method rClique uses the backtracking methodology to do the actual search of
the solution space.
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int btMaxClique(int *maxClique)

{// Solve max-clique problem using backtracking.

// Set maxClique[] so that maxClique[i] = 1 iff i is in max clique.

// Return size of max clique.

// initialize for rClique

currentClique = new int [n + 1];

sizeOfCurrentClique = 0;

sizeOfMaxCliqueSoFar = 0;

maxCliqueSoFar = maxClique;

// find max clique

rClique(1);

return sizeOfMaxCliqueSoFar;

}

Program 20.10 The method adjacencyGraph::btMaxClique

20.2.4 Traveling SalespersonBaktraking Solution
The solution space for the traveling-salesperson problem (Example 20.3) is a permu-
tation tree. Such a tree may be searched by using the function perm (Program 1.32),
which generates all permutations of a list of elements. If we begin with x = [1, 2, · · ·,
n], then we can generate the solution space for the n-vertex traveling-salesperson
problem by generating all permutations of x2 through xn. It is easy to modify perm

so that it does not generate permutations that have an invalid prefix (i.e., the prefix
does not define a path) or a prefix that cannot be completed into better tours than
the best found so far. Notice that in a permutation space tree the permutations de-
fined by the leaves in any subtree have the same prefix (see Figure 20.5). Therefore,
eliminating certain prefixes from consideration is equivalent to not entering certain
subtrees during the search.C++ Implementation
The backtracking algorithm for the traveling-salesperson problem is best imple-
mented as a member of the class adjacencyWDigraph (Program 16.2). Our im-
plementation requires us to add the class data members partialTour (an integer
array that gives the partial tour to the current node), bestTourSoFar, costOfBest-
TourSoFar, and costOfPartialTour. As in our other examples, we will have two
methods btSalesperson and rTSP. The former is a public method, and the latter
a protected method. btSalesperson is essentially a preprocessor for rTSP, which
does a recursive backtrack search in the permutation space tree. The preprocessor
btSalesperson appears in Program 20.12. The invocation rTSP(2) searches a tree
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void rClique(int currentLevel)

{// search from a node at currentLevel

if (currentLevel > n)

{// at leaf, found a larger clique

// update maxCliqueSoFar and sizeOfMaxCliqueSoFar

for (int j = 1; j <= n; j++)

maxCliqueSoFar[j] = currentClique[j];

sizeOfMaxCliqueSoFar = sizeOfCurrentClique;

return;

}

// not at leaf; see whether vertex currentLevel

// is connected to others in current clique

bool connected = true;

for (int j = 1; j < currentLevel; j++)

if (currentClique[j] == 1 && !a[currentLevel][j])

{// vertex currentLevel not connected to j

connected = false;

break;

}

if (connected)

{// try left subtree

currentClique[currentLevel] = 1; // add to clique

sizeOfCurrentClique++;

rClique(currentLevel + 1);

sizeOfCurrentClique--;

}

if (sizeOfCurrentClique + n - currentLevel > sizeOfMaxCliqueSoFar)

{// try right subtree

currentClique[currentLevel] = 0;

rClique(currentLevel + 1);

}

}

Program 20.11 Recursive backtrack method for max clique

that contains all permutations of partialTour[2:n].
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T btSalesperson(int *bestTour)

{// Traveling salesperson by backtracking.

// bestTour[1:n] is set to best tour.

// Return cost of best tour.

// code to verify *this is weighted comes here

// set partialTour to identity permutation

partialTour = new int [n + 1];

for (int i = 1; i <= n; i++)

partialTour[i] = i;

costOfBestTourSoFar = noEdge;

bestTourSoFar = bestTour;

costOfPartialTour = 0;

// search permutations of partialTour[2:n]

rTSP(2);

return costOfBestTourSoFar;

}

Program 20.12 Preprocessor for traveling-salesperson backtracking

Program 20.13 gives the method rTSP. The structure of this method is the same
as that of function perm (Program 1.32). When currentLevel equals n, we are at
the parent of a leaf of the permutation tree and need to first verify that there is
an edge from vertex partialTour[n-1] to partialTour[n], as well as one from
partialTour[n] back to the start vertex 1. If both edges exist, we have found a
new tour. In this case we need to see whether this tour is the best found so far. If
it is, we record the tour and its cost in bestTourSoFar and costOfBestTourSofar,
respectively.

When currentLevel < n, we move to one of the children of the current node only
if there is (1) an edge from partialTour[currentLevel-1] to partialTour[cur-

rentLevel] (if so, partialTour[1:currentLevel] defines a path in the network)
and (2) the cost of the path partialTour[1:currentLevel] is less than the cost
of the best tour found so far (if not, the path cannot be completed into a better
tour).
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void rTSP(int currentLevel)

{// Recursive backtracking code for traveling salesperson.

// Search the permutation tree for best tour. Start at a node

// at currentLevel.

if (currentLevel == n)

{// at parent of a leaf

// complete tour by adding last two edges

if (a[partialTour[n - 1]][partialTour[n]] != noEdge &&

a[partialTour[n]][1] != noEdge &&

(costOfBestTourSoFar == noEdge ||

costOfPartialTour + a[partialTour[n - 1]][partialTour[n]]

+ a[partialTour[n]][1] < costOfBestTourSoFar))

{// better tour found

copy(partialTour + 1, partialTour + n + 1, bestTourSoFar + 1);

costOfBestTourSoFar = costOfPartialTour

+ a[partialTour[n - 1]][partialTour[n]]

+ a[partialTour[n]][1];

}

}

else

{// try out subtrees

for (int j = currentLevel; j <= n; j++)

// is move to subtree labeled partialTour[j] possible?

if (a[partialTour[currentLevel - 1]][partialTour[j]] != noEdge

&& (costOfBestTourSoFar == noEdge ||

costOfPartialTour +

a[partialTour[currentLevel - 1]][partialTour[j]]

< costOfBestTourSoFar))

{// search this subtree

swap(partialTour[currentLevel], partialTour[j]);

costOfPartialTour += a[partialTour[currentLevel - 1]]

[partialTour[currentLevel]];

rTSP(currentLevel + 1);

costOfPartialTour -= a[partialTour[currentLevel - 1]]

[partialTour[currentLevel]];

swap(partialTour[currentLevel], partialTour[j]);

}

}

}

Program 20.13 Recursive backtracking for traveling salesperson
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Excluding the cost of updating bestTourSoFar whenever a better tour is found,
rTSP takes O((n − 1)!) time. The updating time is O(n ∗ (n − 1)!), as O((n − 1)!)
updates take place and each costs Θ(n) time. So the overall complexity is O(n!).
We can reduce the number of search tree nodes visited by rTSP by using stronger
conditions for the cost of a path (see Exercise 16).

20.2.5 Board PermutationProblem Desription
The board-permutation problem arises in the design of large electronic systems.
The classical form of this problem has n circuit boards that are to be placed into
slots in a cage (Figure 20.8). Each permutation of the n boards defines a placement
of the boards into the cage. Let B = {b1, · · ·, bn} denote the n boards. A set L =
{N1, · · ·, Nm} of m nets is defined on the boards. Each Ni is a subset of B. These
subsets need not be disjoint. Each net is realized by running a wire through the
boards that constitute the net.

Figure 20.8 Cage with slots

Example 20.11 Let n = 8 and m = 5. Let the boards and nets be as given below.

B = {b1, b2, b3, b4, b5, b6, b7, b8}

L = {N1, N2, N3, N4, N5}

N1 = {b4, b5, b6}

N2 = {b2, b3}

N3 = {b1, b3}

N4 = {b3, b6}

N5 = {b7, b8}
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Figure 20.9 shows a possible permutation for the boards. The edges denote the
wires that have to be run between the boards.

b 2 b 1 b 3 b 4 b 5 b 6 b 7 b 8

1 2 3 4 5 6 7 8
Slot numbers

N 3

N 2

N 1

N 4

N 5

Figure 20.9 Board wiring

Let x denote a board permutation. Board xi is placed into slot i of the cage
when the placement is done using permutation xi. density(x) is the maximum
number of wires that cross the gap between any pair of adjacent slots in the cage.
For the permutation of Figure 20.9, the density is 2. Two wires cross the gaps
between slots 2 and 3, slots 4 and 5, and slots 5 and 6. The gap between slots 6
and 7 has no wires, and the remaining gaps have one wire each.

Card cages are designed with a uniform gap size (i.e., the space between adjacent
slots is the same). This gap size therefore determines the size of the cage. The
gap size itself must be adequate to accommodate the number of wires that must
pass through it. Hence the gap size (and in turn the cage size) is determined by
density(x).Baktraking Solution
The objective of the board-permutation problem is to find a permutation of the
boards that has least density. Since this problem is an NP-hard problem, it is
unlikely it can be solved by a polynomial-time algorithm, and a search method such
as backtracking is an attractive way to solve it. The backtracking algorithm will
search a permutation space for the best board permutation.C++ Implementation
We may represent the input as an integer array board such that board[i][j] is 1
iff net Nj includes board bi (a Boolean array may be used if we wish to conserve
space). Let boardsWithNet[j] be the number of boards that include net Nj . For
any partial board permutation partial[1:i], let boardsInPartialWithNet[j] be
the number of boards in partial[1:i] that include net Nj . Net Nj crosses the
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gap between slots i and i+1 iff boardsInPartialWithNet[j] > 0 and boardsIn-

PartialWithNet[j] 6= boardsWithNet[j]. The wire density between slots i and
i+1 may be computed by using this test to determine which wires cross the gap
between the two slots. The maximum of the wire densities between slots k and k+1

for 1 ≤ k ≤ i gives the density of the partial permutation.
Program 20.14 gives the function arrangeBoards, which is essentially a prepro-

cessor for the recursive function rBoard (Program 20.15). The function arrange-

Boards returns the density of the best board arrangement; the best arrangement
is returned in the array bestPermutation. All variables not explicitly declared are
global variables.

The function arrangeBoards first sets the global variables. In particular, boards-
WithNet is initialized so that boardsWithNet[j] equals the number of boards with
net j. The elements boardsInPartialWithNet[1:n] have their default initial
value of 0. This setting corresponds to a null partial permutation. The invoca-
tion rBoard(1,0) searches the permutation tree of partial[1:numberOfBoards]
for a best completion of the null permutation whose density is zero. In general,
rBoard(currentLevel,densityOfPartial) finds the best completion of the partial
permutation partial[1:currentLevel-1]. This partial permutation has density
densityOfPartial.

The function rBoard (Program 20.15) has the same structure as Program 20.13,
which also searches a permutation space. In Program 20.15, however, when i

equals numberOfBoards, all boards have been placed and densityOfPartial is
the density of the complete permutation. Since the algorithm completes only
those permutations that are better than the best found so far, we need not verify
that densityOfPartial is less than leastDensitySoFar. When currentLevel <
numberOfBoards, the permutation is not complete. partial[1:currentLevel-1]

defines the partial permutation at the current tree node, and densityOfPartial is
its density. Each child of this node expands this partial permutation by adding one
board at the end. For each such expansion, the new density density is computed,
and only those nodes for which density < leastDensitySoFar are searched. Other
nodes and their subtrees are not searched.Complexity Analysis
At each node of the permutation tree, function rBoard spends Θ(m) time computing
the density at each child. So the total time spent computing these densities is
O(mn!). In addition, O(n!) time is spent generating permutations and O(mn) time
is spent updating the best. Note that each update reduces bestDensitySoFar by
at least one, and on termination bestDensitySoFar ≥ 0. So the number of updates
is O(m). The overall complexity of rBoard is O(mn!).EXERCISES

4. Prove that the two-ship-loading strategy in which the first is loaded as close
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int arrangeBoards(int **theBoard, int theNumberOfBoards,

int theNumberOfNets, int *bestPermutation)

{// Preprocessor for recursive backtracking function.

// Return density of best arrangement.

// initialize global variables

numberOfBoards = theNumberOfBoards;

numberOfNets = theNumberOfNets;

partial = new int [numberOfBoards + 1];

bestPermutationSoFar = bestPermutation;

boardsWithNet = new int [numberOfNets + 1];

fill(boardsWithNet + 1, boardsWithNet + numberOfNets + 1, 0);

boardsInPartialWithNet = new int [numberOfNets + 1];

fill(boardsInPartialWithNet + 1,

boardsInPartialWithNet + numberOfNets + 1, 0);

leastDensitySoFar = numberOfNets + 1;

board = theBoard;

// initialize partial to identity permutation

// and compute boardsWithNet[]

for (int i = 1; i <= numberOfBoards; i++)

{

partial[i] = i;

for (int j = 1; j <= numberOfNets; j++)

boardsWithNet[j] += board[i][j];

}

// find best arrangement

rBoard(1, 0);

return leastDensitySoFar;

}

Program 20.14 Preprocessor for rBoard (Program 20.15)

to its capacity as possible finds a feasible loading whenever there is a way to
load all containers.

5. Experiment with the codes of Programs 20.3 and 20.5 to determine their
relative run-time performance.
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void rBoard(int currentLevel, int densityOfPartial)

{// search from a node at level currentLevel

if (currentLevel == numberOfBoards)

{// all boards placed, we are at a better permutation

for (int j = 1; j <= numberOfBoards; j++)

bestPermutationSoFar[j] = partial[j];

leastDensitySoFar = densityOfPartial;

}

else // try out subtrees

for (int j = currentLevel; j <= numberOfBoards; j++)

{// try child with board partial[j] as next one

// update boardsInPartialWithNet[]

// and compute density at last slot

int density = 0;

for (int k = 1; k <= numberOfNets; k++)

{

boardsInPartialWithNet[k] += board[partial[j]][k];

if (boardsInPartialWithNet[k] > 0 &&

boardsWithNet[k] != boardsInPartialWithNet[k])

density++;

}

// update density to be overall density of partial arrangement

if (densityOfPartial > density)

density = densityOfPartial;

// search subtree only if it may contain a better arrangement

if (density < leastDensitySoFar)

{// move to child

swap(partial[currentLevel], partial[j]);

rBoard(currentLevel + 1, density);

swap(partial[currentLevel], partial[j]);

}

// reset boardsInPartialWithNet[]

for (int k = 1; k <= numberOfNets; k++)

boardsInPartialWithNet[k] -= board[partial[j]][k];

}

}

Program 20.15 Search the permutation tree
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6. Write a new version of Program 20.3 that uses strategy 1 to achieve a time
complexity of O(2n).

7. Modify Program 20.3 using strategy 2 to reduce its time to O(2n).

8. Write a recursive backtracking algorithm for the sum-of-subset problem. In
this problem you are given an array of integer weights and are to find a subset
of the weights that sums to a target weight c. Notice that in this case we
can terminate as soon as a subset with sum c is found. There is no need to
remember the best solution found so far. Your code should not use an array
such as the array x that is used in Program 20.3. Rather, the solution should
be reconstructed as the recursion unfolds after finding a subset with sum c.

9. Refine Program 20.7 so that it also computes a 0/1 array x that corresponds
to the best packing of the knapsack.

10. Develop an iterative backtracking algorithm for the 0/1 knapsack problem.
Your algorithm should be similar to Program 20.5. Notice that the function
bound can be modified so that following the computation of a bound, you
can avoid remaking the left moves made by bound and move directly to the
left-most node moved to by bound.

11. Write an iterative version of Program 20.11 that corresponds to Program 20.5.
What can you say about the relative merits of the two versions?

12. Write a version of Program 20.10 that begins by sorting the vertices into
decreasing order of degree. Do you expect this version to work any better
than Program 20.10 works?

13. Write a backtracking algorithm for the max-independent-set problem.

14. Write a version of the max-clique code (Programs 20.10 and 20.11) that is
implementation independent. The new code is to be a member of the ab-
stract class graph (Program 16.1), and the same code should work on in-
stances of the classes adjacencyGraph, adjacencyWGraph, linkedGraph, and
linkedWGraph (see Section 16.7).

15. Let G be a directed graph with n vertices. Let Maxi be the cost of the most
expensive edge that leaves vertex i.

(a) Show that every traveling-salesperson tour has a cost less than
∑n

i=1
Maxi

+1.

(b) Use this bound as the initial value of costOfBestTourSoFar. Rewrite
btSalesperson and rTSP, simplifying the code where possible.

16. Let G be a directed graph with n vertices. Let MinOuti be the cost of the
least expensive edge that leaves vertex i.
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(a) Show that all traveling-salesperson tours with the prefix x1 through xi

cost at least
∑i

j=2
A(xj−1, xj) +

∑n

j=i MinOutxj
where A(u, v) is the

cost of the edge (u, v).

(b) Use the result of (a) to obtain a condition stronger than

if (a[partialTour[currentLevel - 1]][partialTour[j]] != noEdge

&& (costOfBestTourSoFar == noEdge ||

costOfPartialTour

+ a[partialTour[currentLevel - 1]][partialTour[j]]

< costOfBestTourSoFar))

which is used in Program 20.13 to determine when to move to a child
node. The first sum is easily computed from costOfPartialTour, and
the second is easily computed by maintaining a new variable minAddi-

tionalCost that equals the sum of the MinOuti values of the vertices
not included in the path so far constructed.

(c) Test the new version of rTSP to see how many nodes of the permutation
tree it visits compared to the number visited by Program 20.13.

17. Consider any board arrangement. The length of a net is the distance between
the first and last boards that include this net. For the board arrangement of
Figure 20.9, the first board that includes N4 is in slot 3, and the last in slot
6. The net length is therefore 3. The length of net N2 is 2 because its first
board is in slot 1 and its last in slot 3. The length of the longest net in the
arrangement of Figure 20.9 is 3. Write a backtracking code to find the board
arrangement that has the smallest maximum length. Test the correctness of
your code.

18. [Vertex Cover] Let G be an undirected graph. A subset U of its vertices is a
vertex cover iff for every edge (u, v) of G either u or v or both are in U .
The number of vertices in U is the size of the cover. {1,2,5} is a vertex cover
of size three in the graph of Figure 20.7(a). Write a backtracking algorithm
to find a vertex cover of least size. What is its complexity?

19. [Simple Max Cut] Let G be an undirected graph and let U be any subset of its
vertices. Let V be the remaining vertices of G. The number of edges with one
endpoint in U and the other in V is the size of the cut defined by U . Write
a backtracking algorithm to find the size of the maximum cut as well as the
corresponding U . What is its complexity?

20. [Machine Design] A certain machine consists of n components. Each compo-
nent is available from three vendors. Let wij be the weight of component i
available from vendor j and let cij be its cost. Write a backtracking algorithm
to determine the least-weight machine that can be constructed at a cost no
more than c. What is its complexity?
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21. [Network Design] A petroleum delivery network has been represented as a di-
rected weighted acyclic graph G. G has a vertex s called the source vertex.
This vertex is the source from which the petroleum flows to the remaining
vertices. The in-degree of s is 0. Each edge weight gives the distance between
the two vertices it connects. The pressure loss as petroleum flows through
the network is a function of the distance traveled. To ensure proper opera-
tion of the network, it is necessary to maintain a certain minimum pressure
Pmin throughout the network. To maintain this minimum pressure, pressure
boosters may be placed at some or all of the vertices of G. A pressure booster
restores the pressure to the maximum allowable level Pmax. Let d be the
distance petroleum can flow before its pressure drops from Pmax to Pmin. In
the booster-placement problem, we need to place the minimum number
of boosters so that petroleum flows a distance no more than d before encoun-
tering a booster. Write a backtracking algorithm for the booster-placement
problem. What is its complexity?

22. [n Queens] In the n-queens problem, we wish to find a placement of n queens
on an n× n chessboard such that no two queens attack. Two queens are said
to attack iff they are in the same row, column, diagonal, or antidiagonal of
the chessboard. Hence we may assume that in any feasible solution, queen i
is placed in row i of the chessboard. So we are interested only in determining
the column placement of each queen. Let ci denote the column that queen i is
placed in. If no two queens attack, then [c1, · · ·, cn] is a permutation of [1, 2,
· · ·, n]. The solution space for the n-queens problem can therefore be limited
to all permutations of [1, 2, · · ·, n].

(a) Organize the n-queens solution space as a tree.

(b) Write a backtracking procedure to search this tree for a feasible place-
ment of the n queens.

23. Write a function to search a subset space tree, which is a binary tree, by
backtracking. The parameters to your function should include functions to
determine whether a node is feasible, compute a bound at this node, determine
if this bound is better than another value, and so on. Test your code by using
it on the loading and 0/1 knapsack problems.

24. Do Exercise 23 for permutation space trees.

25. Write a function to search a solution space by backtracking. The parameters
to your function should include functions to generate the next child of a node,
determine whether this next child is feasible, compute a bound at this node,
determine whether this bound is better than another value, and so on. Test
your code by using it on the loading and 0/1 knapsack problems.


