Correspondence Based Data Structures For Double Ended Priority Queues

Kyun-Rak Chong
Department of Computer Engineering
HongIk University
Seoul, Korea
chong@cs.hongik.ac.kr

Sartaj Sahni
Computer & Information Science & Engineering Department
University of Florida
Gainesville, FL 32611
sahni@cise.ufl.edu

November 4, 1998

1 Introduction

A min priority queue (minPQ) is a data structure which supports the following operations:

- FindMin(Q): return the minimum element in Q
- DeleteMin(Q): delete the minimum element in Q
- Insert(Q,x): insert x into the minPQ Q

A max priority queue (maxPQ) is an analogous data structure in which the operations FindMin(Q) and DeleteMin(Q) are replaced by the operations FindMax(Q) and DeleteMax(Q). Several implicit and explicit data structures have been developed for minPQs (and hence for maxPQs) [10, 16, 5, 8, 2, 6, 14, 9, 15].

A min meldable priority queue (minMPQ) is a min priority queue which also supports the operation

• Meld (Q_1,Q_2) : return a min priority queue that contains all the elements in minPQs Q_1 and Q_2 . Q_1 and Q_2 may be destroyed by the operation.

A maxMPQ is defined similarly. Among the known priority structures, the structure, Fast Meldable Priority Queue (FMPQ), has the best asymptotic properties - DeleteMin(Q) runs in logarithmic time and the remaining operations take constant time [2].

A double ended priority queue (DEPQ) is a data structure which supports the operations:

- FindMin(Q): return the minimum element in Q
- FindMax(Q): return the maximum element in Q
- DeleteMin(Q): delete the minimum element in Q
- DeleteMax(Q): delete the maximum element in Q
- Insert(Q,x): insert x into Q

Many data structures [1, 3, 4, 7, 11, 12, 17, 2] have been proposed for the representation of a DEPQ. Some of these data structures [12, 7, 2] were developed to also support the Meld operation efficiently. For Example, Brodal [2] describes how his FMPQ structure may be used to perform the DeleteMin and DeleteMax operation in logarithmic time and the remaining operations in constant time.

The purpose of this paper is to demonstrate the generality of two techniques used in [7] to develop an MDEPQ representation from an MPQ representation – height biased leftist trees. These methods – total correspondence and leaf correspondence – may be used to arrive at efficient DEPQ and MDEPQ data structures from PQ and MPQ data structures such as the pairing heap [8, 15], Binomial and Fibonacci heaps [9], and Brodal's FMPQ [2] which also provide efficient support for the operation:

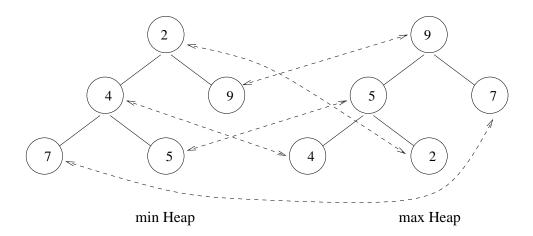


Figure 1: Dual heap structure

• Delete(Q,p): delete and return the element located at p

We begin, in Section 2, by reviewing a rather straightforward way, dual priority queues, to obtain a (M)DEPQ structure from a (M)PQ structure. This method [7, 2] simply puts each element into both a minPQ and a maxPQ. In Section 3, we describe the total correspondence method and in Section 4, we describe leaf correspondence. Both sections provide examples of PQs and MPQs and the resulting DEPQs and MDEPQs. Section 5 gives complexity results. In Section 6, we provide the result of experiments that compare the performance of the MDEPQs based on height biased leftist tree [5], pairing heaps [8, 15], and FMPQs [2]. For reference purpose, we also provide run times for the splay tree data structure [13]. Although splay trees were not specifically designed to represent DEPQs, it is easy to use them for this purpose. Note that splay trees do not provide efficient support for the Meld operation.

2 Dual Priority Queues

A simple strategy, dual priority queues, to use to arrive at a DEPQ structure from a PQ structure that also supports Delete(Q, p) is to maintain both a minPQ Qmin and a maxPQ Qmax; every element of the PQ is in both Qmin and Qmax; and there are pointers between the two copies of any element e (note that one copy of e is in Qmin and the other in Qmax). For example, if the DEPQ is to contain elements with priorities [5, 9, 2, 4, 7], then we could set up a min heap and a max heap as in Figure 1. Pointers between the two copies of an element are shown by broken lines. When dual priority queues are used, the (M)DEPQ operations are performed as follows.

- FindMin(Q) = return FindMin(Qmin)
- FindMax(Q) = return FindMax(Qmax)
- $Insert(Q,x) = \{Insert(Qmin,x); Insert(Qmax,x); SetPointers();\}$

```
• DeleteMin(Q) = {Delete(Qmax, Pointer(FindMin(Qmin))); DeleteMin(Qmin);}
```

- DeleteMax(Q) = {Delete(Qmin, Pointer(FindMax(Qmax))); DeleteMax(Qmax);}
- $Meld(Q_1,Q_2) = \{Meld(Q_1 \min,Q_2 \min); Meld(Q_1 \max,Q_2 \max);\}$

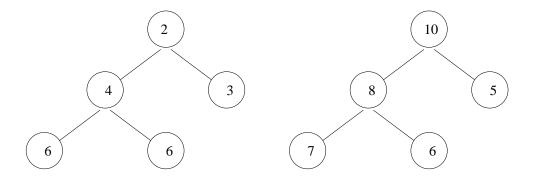
SetPointers() creates the pointers between the two copies of the newly inserted element. The code to do this task could easily be integrated into the code for Insert. Pointer(y) gives the pointer to the copy of y in the dual priority queue.

If we make the assumption that Delete(Q,p) has the same complexity as DeleteMin and DeleteMax, then the asymptotic complexity of the individual operations for a (M)DEPQ are the same as for the corresponding operations in a (M)PQ. Since this assumption is valid for all PQ structures cited earlier other than the weight biased leftist trees of [6], the concept of dual priority queues may be used to arrive at efficient (M)DEPQ structures from each of the cited (M)PQ structures other than weight biased leftist trees.

Although the notion of dual priority queues is straightforward, it suffers from at least two deficiencies: (1) The number of nodes in the two priority queues is twice the number of elements and (2) Each operation of the (M)DEPQ takes approximately twice the time it takes for the corresponding operation in a PQ because the corresponding operation needs to be done in both the minPQ and the maxPQ. The concepts of total and leaf correspondence overcome both these deficiencies.

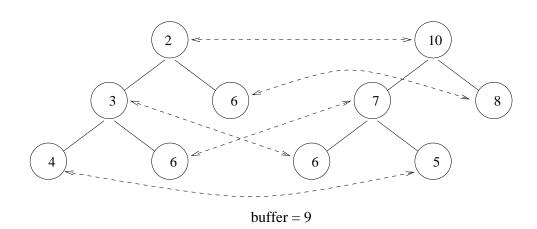
A refinement of dual priority queues was proposed by Cho and Sahni [7]. This refinement applies to linked priority queues such as leftist trees and Brodal's FMPQ structure. The two nodes used for each element in ordinary dual priority queues are combined into a single node. So, in refined dual priority queues based on leftist trees, for example, each node will have 1 data field, 2 left child fields (one for the min leftist tree, the other for the max leftist tree), 2 right child fields, and 2 sh (length of shortest path to an external node) fields.

3 Total Correspondence


The notion of total correspondence borrows heavily from the ideas used in a twin heap [17]. In the twin heap data structure n elements are stored in a min heap using an array minHeap[1:n] and n other elements are stored in a max heap using the array maxHeap[1:n]. The min and max heaps satisfy the inequality minHeap[i] \leq maxHeap[i], $1 \leq i \leq n$. In this way, we can represent a DEPQ with 2n elements. When we must represent a DEPQ with an odd number of elements, one element is stored in a buffer, and the remaining elements are divided equally between the arrays minHeap and maxHeap.

In total correspondence, we remove the positional requirement in the relationship between pairs of elements in the min heap and max heap. The requirement becomes: for each element a in minPQ there is a distinct element b in maxPQ such that $a \le b$ and vice versa. (a,b) is a

corresponding pair of elements. Figure 2(a) shows a twin heap with 11 elements and Figure 2(b) shows a total correspondence heap. The broken arrows connect corresponding pairs of elements.


In a twin heap the corresponding pairs (minHeap[i], maxHeap[i]) are implicit, whereas in a total correspondence heap these pairs are represented using explicit pointers. The (M)DEPQ operations can be performed on a total correspondence priority queue as below.

```
FindMax(Q) =
if (the buffer is empty)
  return FindMax(Qmax)
else
  return max{buffer, FindMax(Qmax)}
FindMin(Q) = similar to FindMax(Q)
Insert(Q,e) =
if (the buffer is empty)
  put e into the buffer;
else {
  Insert(Qmax,max{buffer,e});
  Insert(Qmin,{buffer,e} - max{buffer,e});
  SetPointers();
  buffer = empty;
}
DeleteMax(Q) =
if (the buffer is empty) {
  y = FindMax(Qmax);
 DeleteMax(Qmax);
  buffer = Delete(Qmin, Pointer(y));
}
else {
  if (buffer < FindMax(Qmax)) {
    // delete FindMax(Qmax)
    y = FindMax(Qmax);
   DeleteMax(Qmax);
    if (buffer ≥ element at Pointer(y)) {
```


buffer = 9

(a) Twin heap

(b) Total correspondence heap

Figure 2: Twin heap and total correspondence heap

```
Insert(Qmax,buffer);
    SetPointers(); // between Pointer(y) and buffer
}
else {
    Insert(Qmax, element at Pointer(y));
    Delete(Qmin, Pointer(y));
    Insert(Qmin, buffer);
    SetPointers();
}
buffer = empty;
}
DeleteMin(Q) = similar to DeleteMax(Q);
Meld(Q1,Q2) = {Meld(Q1 min,Q2 min); Meld(Q1 max,Q2 max);}
```

In a total correspondence (M)DEPQ, the number of nodes is either n or n-1. The space requirement is half that needed by the dual priority queue representation. The time required is also reduced. For example, if we do a sequence of inserts, every other one simply puts the element in the buffer. The remaining inserts put one element in Qmax and one in Qmin. So, on average, an insert takes time comparable to an insert in either Qmax or Qmin. Recall that when dual priority queues are used the insert time is the sum of the times to insert into Qmax and Qmin. Note also that the size of Qmax and Qmin together is half that of a dual priority queue.

If we assume that the complexity of the insert operation for priority queues as well as 2 Delete() operations is no more than that of the delete max or min operation (this is true for all known priority queue structures other than weight biased leftist trees), then the complexity of DeleteMax and DeleteMin for total correspondence (M)DEPQ is the same as for the DeleteMax and DeleteMin operation of the underlying priority queue data structure. The complexity of the Meld operation is the same as that for the underlying priority queue.

Using the notion of total correspondence, we trivially obtain efficient (M)DEPQ structures starting with any of the known priority queue structures (other than weight biased leftist trees). In particular, if we use the FMPQ structure of [2] as the base priority structure, we obtain a total correspondence MDEPQ structure in which DeleteMax and DeleteMin take logarithmic time, and the remaining operations take constant time. This adaptation is superior to the dual priority queue adaptation proposed in [2] because the space requirements are almost half. Additionally, the total correspondence adaptation is faster (see Section 6).

The DeleteMax and DeleteMin operations can generally be programmed to run faster than

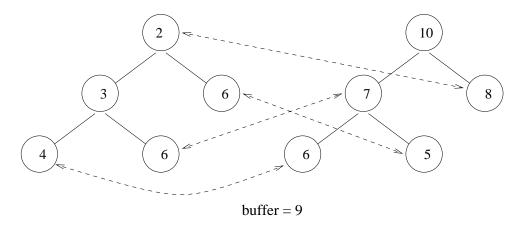


Figure 3: Leaf correspondence heap

suggested by our generic algorithms. This is because, for example, a DeleteMax and Insert into a maxPQ can often be done faster as a single operation ChangeMax. Similarly a Delete and Insert can be programmed as a Change operation.

4 Leaf Correspondence

In leaf correspondence (M)DEPQs, for every leaf element a in minPQ, there is a distinct element b in maxPQ such that $a \le b$ and for every leaf element c in maxPQ there is a distinct element d in minPQ such that $d \le c$. Figure 3 shows a leaf correspondence heap.

Efficient leaf correspondence (M)DEPQs may be constructed easily from (M)PQs which satisfy the following requirements:

- (a) The (M)PQ supports the operation Delete(Q,p) efficiently.
- (b) When an element is inserted into the (M)PQ, no nonleaf node becomes a leaf node (except possibly the node for the newly inserted item).
- (c) When an element is deleted (using Delete, DeleteMax or DeleteMin) from the (M)PQ, no nonleaf node (except possibly the parent of the deleted node) becomes a leaf node.
- (d) The Meld operation (if supported) should not create new leaf nodes.

Some of the (M)PQ structures that satisfy these requirements are height biased leftist tree, pairing heaps, and Fibonacci heaps. Requirements (b) and (c) are not satisfied, for example, by ordinary heaps and the FMPQ structure of [2].

The FindMax, FindMin, and Meld algorithms for a leaf correspondence (M)DEPQ are the same as those for a total correspondence (M)DEPQ. The Insert and DeleteMax algorithms are given below. DeleteMin is similar to DeleteMax.

```
Insert(Q,x) =
if (the buffer is empty)
  buffer = x;
else {
  small = min \{buffer, x\};
  large = \{buffer, x\} - \{small\};
  Insert(Qmin, small);
  if (small is a leaf) {
    Insert(Qmax, large);
    SetPointers(); // between small and large
    buffer = empty;
  }
  else buffer = large;
DeleteMax(Q) =
if (the buffer is empty) {
  y = FindMax(Qmax);
  DeleteMax(Qmax);
  if (Pointer(y) \neq null)
    if (Pointer(y) is not a leaf)
      Pointer(Pointer(y)) = null;
    else { // must establish leaf correspondence
      p = Parent(Pointer(y));
      y = Delete(Qmin,Pointer(y));
      if (p is now a leaf and Pointer(p) = null) {
        Insert(Qmax,y);
        SetPointers(); // between p and y
      else buffer = y;
    }
else { // buffer is not empty
  y = FindMax(Qmax);
  if (buffer \geq y)
    buffer = empty;
  else { // delete from Qmax
    DeleteMax(Qmax);
```

```
if (Pointer(y) \neq null) {
      if (Pointer(y) is a leaf) {
        // must establish leaf correspondence
        if (buffer ≥ element at Pointer(y)) {
          Insert(Qmax,buffer);
          SetPointers(); // between Pointer(y) and buffer
          buffer = empty;
        }
        else {
          p = Parent(Pointer(y));
          z = Delete(Qmin, Pointer(y));
          Insert(Qmax,z);
          if (either p or z has become a leaf and Pointer(p) is null)
            SetPointers(); // between p and z
          else
            if (z has become a leaf) { // Pointer(p) is not null
              Insert(Qmin, buffer);
              SetPointers(); // between z and buffer
              buffer = empty;
            else Pointer(z) = null;
      else Pointer (Pointer (y)) = null;
  }
}
```

The operations on leaf correspondence height biased leftist trees and pairing heaps have the same asymptotic complexity as when total correspondence is used.

Although heaps and Brodal's FMPQ structure do not satisfy the requirements of our generic approach to build a leaf correspondence (M)DEPQ structure from a priority queue, we can nonetheless arrive at leaf correspondence heaps and leaf correspondence FMPQs using a customized approach.

4.1 Leaf Correspondence Heaps

We assume familiarity with the top-down delete and bottom-up insert algorithms for min and max heaps [10]. We first describe a way to establish correspondence between two nodes P and Q, P is in the max heap, Q is in the min heap, one or both are leaves, and both presently have null correspondence pointers. If the element, data(P), in node P is such that $data(P) \ge data(Q)$,

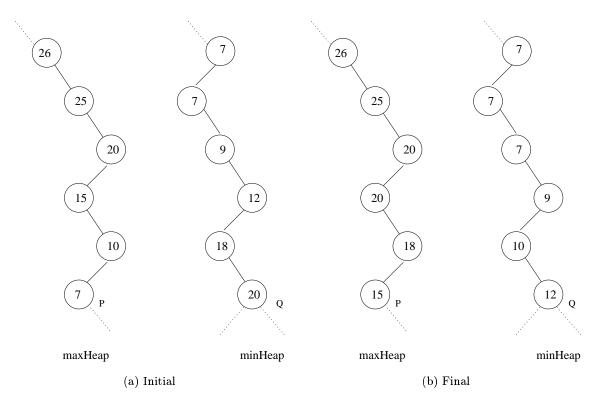


Figure 4: Estabilishing correspondence between P and Q

then we can simply set correspondence pointers between P and Q. So, suppose that data(P) < data(Q). To establish a correspondence between node P and Q, we must change the elements in P and/or Q so that $data(P) \ge data(Q)$. To this end, we traverse the path from P to the root of the max heap maxHeap collecting elements that are < data(Q). In the example of Figure 4(a), the elements 7, 10, and 15 are collected.

Next, we collect elements on the path from \mathbb{Q} to the root of minHeap that are $> \mathtt{data}(\mathbb{P})$, the elements 20, 18, 12, and 9 are collected. The two lists of collected elements are merged to get the list 7, 9, 10, 12, 15, 18, 20 and these elements are reassigned to the nodes of minHeap and maxHeap. The first four elements are put in minHeap because four elements of the list came from minHeap, the remaining elements are put into maxHeap. The resulting configuration is shown in Figure 4(b). This element reassignment process replaces elements on the path from \mathbb{P} to the root of maxHeap by possibly larger ones and those on the path from \mathbb{Q} to the root of minHeap by possibly smaller ones. Consequently, the heap property is not violated. Further data(\mathbb{P}) \geq data(\mathbb{Q}) and we can set correspondence pointers between \mathbb{P} and \mathbb{Q} . Note that correspondence pointers in nodes on the paths from \mathbb{P} and \mathbb{Q} to their respective roots are still valid. We shall refer to this method of establishing correspondence as "establish $\mathbb{P}\mathbb{Q}$ correspondence". Note that we can establish $\mathbb{P}\mathbb{Q}$ correspondence in $O(\log n)$ time, where n is the total number of elements in the leaf correspondence heap.

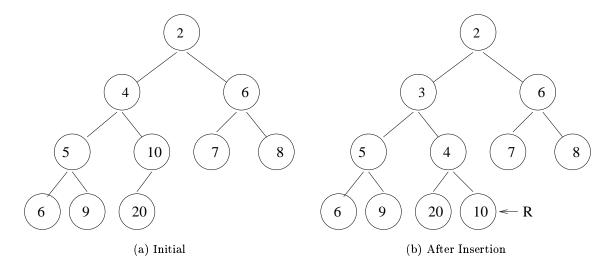


Figure 5: Heap insertion

4.1.1 Inserting into a Leaf Correspondence Heap

When a new element is inserted into a nonempty min heap or max heap, it is possible for a nonleaf existing element to become a leaf. This can happen only when we insert an element into a heap that has an even number of elements. Figure 5(a) shows a min heap with 10 elements. If we insert 3 into this min heap, the result is the min heap of Figure 5(b).

Element 10 which is a nonleaf of Figure 5(a) becomes a leaf because of the insertion. The new node R is the right child of its parent p(R). During the insertion of element x into a min heap a nonleaf becomes a leaf iff (a) the new node R is the right child of its parent and (b) the original element in p(R) > x. A similar observation may be made about insertion into a max heap. With this knowledge, we arrive at the following algorithm to insert an element x into a leaf correspondence heap.

```
InsertLCH(Q,e) =
if (the buffer is empty)
  buffer = x;
else {
  small = min {buffer, x};
  large = {buffer, x} - {small};
  insert large into maxHeap using the max heap insertion algorithm;
  if (a nonleaf of the original maxHeap is now a leaf that has a null correspondence pointer)
  remove the new leaf and put it in the buffer;
  insert small into minHeap using the min heap insertion algorithm;
  if (small is a leaf)
   set correspondence pointers between small and large;
```

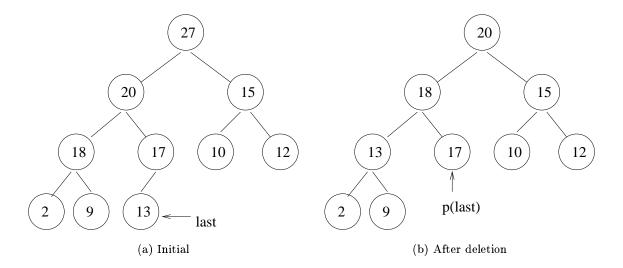


Figure 6: Deletion from a max heap

```
else

if (a nonleaf R (see Figure 5) with null corresponding pointer becomes a leaf)

establish PQ correspondence with P = R and Q = large;

else

if (large is a leaf)

set correspondence pointers between small and large;

}
```

The time required to insert an element into an LCH is $O(\log n)$.

4.1.2 Deleting the Maximum Element from a Leaf Correspondence Heap

Next, consider deleting the maximum element from a LCH (deleting the minimum element is similar). The maximum element is either in the buffer or in the root of maxHeap. The case when the maximum element is in the buffer is handled by simply emptying the buffer. When the maximum element is in the root of the maxHeap, we first use the delete max algorithm for max heaps. This algorithm takes the last element, data(last), out of the max heap and reinserts this element into the max heap in a top down manner (see Figure 6).

As a result of this deletion process, the former parent, p(last), of the last element may become a leaf. When p(last) has a null correspondence pointer, we need to establish correspondence for this new leaf node. Notice that the deletion process moves an element from a leaf node to a nonleaf node. This element is data(last) in Figure 6(a), and is data(new Parent(data(last))) when data(last) is a leaf node following reinsertion. Let C be the corresponding node in the minHeap for the former leaf. Establish PQ correspondence with P =

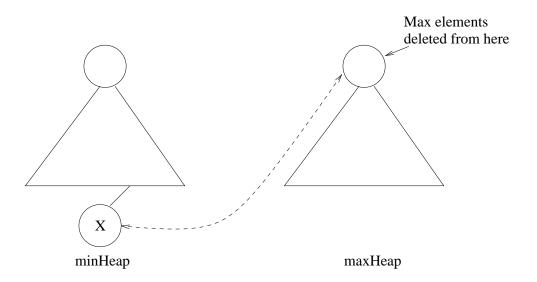


Figure 7: Establishing correspondence for the correponding node

p(last) and Q = C.

Having taken care of possible correspondence problems in maxHeap, we proceed to take care of such problems in minHeap. Problems of this type arise only when the deleted max element is the corresponding element for a leaf element data(x) in minHeap. We must establish correspondence for leaf node x of minHeap.

First, consider the case when x is the last node of minHeap. If the removal of x does not cause the parent node p(x) to become a leaf or if p(x) has a non null correspondence pointer, we remove node x from minHeap and insert data(x) back into the LCH using InsertLCH. If the removal of x cause p(x) to become a leaf with a null correspondence pointer, we insert data(x) into maxHeap using the bottom up insertion algorithm for a max heap. This insertion creates a new leaf. If this new leaf has a null correspondence pointer, we establish PQ correspondence with P = new leaf and Q = p(x); otherwise, we establish PQ correspondence with P = node that contains data(x) and Q = p(x).

The second and final case to consider is when x is not the last node of minHeap. Let last \neq x be the last node. If p(last) has a non null correspondence pointer or p(last) does not become a leaf when node last is removed, then remove node last; establish PQ correspondence with P = node of maxHeap that corresponds to the former leaf last and Q = x; insert data(last) into the LCH using InsertLCH. If p(last) has a null correspondence pointer and p(last) becomes a leaf following removal of the node last, move data(last) and correspondence(last) to p(last); remove node last; and insert the original data(p(last)) into maxHeap. This creates a new leaf in maxHeap. If this new leaf has a null correspondence pointer, we establish PQ correspondence with P = new leaf and Q = x; otherwise, we establish PQ correspondence with P = node that contains the original data(p(last)) and Q = x.

The complexity of the DeleteMaxLCH process described above is $O(\log n)$.

Table 1: Complexity of the (M)DEPQ operations

	FindMax/Min	DeleteMax/Min	Insert	Meld
Dual Correspondence	$O(t_{FindMax})$	$O(t_{DeleteMax})$	$O(t_{Insert})$	$O(t_{Meld})$
Total Correspondence	$O(t_{FindMax})$	$O(t_{DeleteMax} + t_{Insert} + t_{Delete})$	$O(t_{Insert})$	$O(t_{Meld})$
DLT/TLT/LLT				
DPH/TPH/LPH	$O(t_{FindMax})$	$O(t_{DeleteMax} + t_{Insert} + t_{Delete})$	$O(t_{Insert})$	$O(t_{Meld})$
DFMPQ/TFMPQ/LFMPQ				

4.2 Leaf Correspondence FMPQs

The generic leaf correspondence algorithms may be applied to leaf correspondence FMPQs. However, the application of these algorithms may leave behind leaves that have a null correspondence pointer. To overcome this problem, newly created leaves with null correspondence pointer are detached from their trees and reinserted into the leaf correspondence FMPQ. It may be shown that O(1) such reinsertions are needed. Therefore, the asymptotic complexity of each MDEPQ operation is the same as for the corresponding operation in an FMPQ.

5 Complexity of Correspondence (M)DEPQs

Let $t_{FindMax}(=t_{FindMin})$, $t_{DeleteMax}(=t_{DeleteMin})$, t_{Delete} , t_{Insert} and t_{Meld} be the complexity of FindMax, DeleteMax, Delete, Insert and Meld operations for the (M)PQ upon which a correspondence DEPQ is based. Table 1 summarizes the complexity of the (M)DEPQ operations when the generic and customized correspondence algorithms are used. In this table, DLT refers to dual correspondence leftist trees, TLT to total correspondence leftist trees, and LLT to leaf correspondence leftist trees; PH is an abbreviation for the pairing heap data structure.

As far as space complexity is concerned, dual and refined dual correspondence require approximately twice as much space as taken by total and leaf correspondence; the space requirements of total and leaf correspondence are the same.

6 Experimental Results

We compared the runtime performance of dual, total and leaf correspondence double ended priority queue structures. Our experiements were limited to correspondence structures based on height biased leftist trees, pairing heaps, and fast meldable priority queues; the first of these permits $O(\log n)$ time melds while in the other two, a meld takes O(1) time. For comparison purposes, our experimental study also includes the splay tree [13]. This tree was adapted to perform the DEPQ operations. We chose the splay tree because it is the fastest binary search tree structure [6].

100K 10K 792 744 033 306 319 224 1968 101 1354 202 203 100K 10K 10K 1361 1376 1339 1527 3131 1275 3331 2013 2683 1013 100K 10K 1081 1076 1339 1527 3131 1275 3331 2013 2683 1013 2014 2016 10K 100K 100K 1090 1223 970 934 940 848 75427 4560 3073 4891 2015 100K 2055 2798 2356 2397 2228 2101 6576 5704 590 1200 1223 2755 495 2756 495 4	inputs	m	n	DLT	TLT	$_{ m LLT}$	DPH	TPH	LPH	DFD	TFD	LFD	Splay
100K 100K 782 7744 603 585 582 728 2734 2308 2037 49]	mpass	,,,,											
10K		1.0077		1									
Mathematics		100K											
RD				1									
RD													
RD1													
RD1		$200 \mathrm{K}$	10K			979	934	949	847	5427	4560	3974	803
Texas	DD1		100K	2955	2798	2355	2397	2228	2101	6576	5704	5209	1809
	RD1		1 M	4699	4348	3733	6958	5001	4856	8325	7371	6831	2733
100K 5794 5550 4589 4327 4213 3921 16201 13918 12412 3601 1M 11005 10274 8788 11069 9164 8814 20256 81854 18650 6503 11M 10K 4966 4373 3420 3269 3410 2946 29572 22584 19259 22586 11M 20165 18966 16168 17106 15277 14604 40581 35618 33282 12091 100K 10K 744 705 572 569 365 511 2646 2229 1955 4388 100K 1457 1359 1152 14121 1236 1169 3102 2077 24660 755 11M 1819 1662 1424 3209 3231 3158 3820 3202 2209 365			1 K	1994	1842	1429	1396	1468	1245	9863	8057	6882	1194
Heart Hear		500K	10K	2614	2466	1942	1847	1911	1672	13503	11316	9733	1604
IN			100K	5794	5550	4589	4327	4213	3921	16201	13918	12412	3601
IN			1 M	11005	10274	8788	11069	9164	8814	20576	18154	16850	6503
1 M			1 K	3934	3633	2816	2752	2898	2451	19704	16090	13734	2354
100K 2908 8940 7277 6604 6675 6130 32135 27425 23067 5791		1 M		1									
IM									6130				
100K				1									
The first color The first													
Horn		1.007/											
Name		100K		1									
RD2				1									
RD2													
RD2 1M 3537 3247 2778 6403 4442 4298 7617 6708 6147 1606 1K 1977 1822 1414 1390 1460 1235 9813 8009 6839 1179 500K 10K 2492 2336 1839 1789 1850 1611 13287 1112 9524 1458 10M 8268 7653 6526 9754 7835 7489 18927 16605 15285 1M 10K 4484 4177 3265 3181 3317 2853 26674 22296 18974 2629 1M 10K 4944 4177 3265 3181 3317 2853 26674 22296 18974 2629 1M 10K 7975 7586 6161 6045 6012 5474 30868 26325 22661 4394 1M 15107 14105 1195 14654 12800 12137 37552 32792 30253 7549 100K 10K 913 495 200 244 231 199 2694 2110 1673 58 100K 1149 603 200 419 307 287 3244 2271 2017 58 1M 1482 757 200 2219 1207 1187 3839 3062 2408 58 20K 10K 1824 993 400 472 472 391 5381 4230 3394 118 100K 10K 818 399 456 497 382 382 3841 417 1NC 1K 3512 2036 1000 1138 1261 953 9589 7442 6091 295 500K 10K 4559 2494 1000 1156 1222 964 1383 10564 8563 294 1M 10K 4181 400 2440 1416 1374 7689 1523 4266 294 1M 7007 3592 1001 1309 1160 1041 16089 12761 10024 294 1M 700K 966 656 478 372 386 278 3861 2950 2266 588 1M 177 5000 2001 2294 2511 1907 1907 1908 12761 10024 294 1M 10K 906 656 478 372 386 278 3861 2990 2536 120 10K 10K 896 656 478 372 386 278 3861 2990 2536 120 10K 10K 891 400 400 4156 513 885 4400 812189 589 10K 10K 4597 2583 1127 1191 1374 1385 1545 1546 295 2566 294 10K 806 656 478 372 386 278 3861 2990 2536 120 10K 10K 906 656 478 372 386 278 3861 2990 2536 120 10K 10K 890 4681 2007 2272 2333 1998 19112 14847 12566				1									
RD2		200K		1									
The color of the			100K					2030					
SOOK	RD2												
100K			1 K	1977	1822	1414	1390	1460	1235	9813	8009	6839	1179
1M		$500 \mathrm{K}$	10K	2492	2336	1839	1789	1850	1611	13287	11121	9524	1458
1M			100K	4964	4713	3887	3921	3802	3512	15376	13192	11519	2694
1M			1 M	8268	7653	6526	9754	7835	7489	18927	16605	15285	4047
100K			1 K	3899	3589	2782	2737	2878	2428	19631	16019	13663	2325
100K		1 M									22296		
1M													
100K				1									
100K													
NC		1.007/		1									
1M		100K		1									
IK													
NC													
INC				1									
INC		200K		1									
TK													
Tok	INC												
100K				1						9589			
1M		500K	10K	4559	2494	1000	1156	1222	964	13443	10564	8563	294
1K 7023 4086 1999 2273 2530 1907 19204 14908 12189 589 1M 10K 9117 5000 2001 2294 2511 1920 26911 21162 17188 589 100K 11221 5900 2001 2450 2316 1997 31936 25453 20066 588 1M 13729 7056 2001 4201 3080 2872 38353 30641 24095 587 10K 10K 906 551 329 284 312 232 2825 2256 1926 104 10K 10K 986 656 478 372 386 278 3661 2998 2686 324 1M 986 656 478 372 386 278 3409 3250 2124 200K 10K 1811 1062 429 530 587 429 5515			100K	5623	2949	1001	1309	1160	1041	16089	12761	10024	294
1M			1 M	7007	3592	1001	3101	2039	1937	19183	15324	12052	294
100K			1 K	7023	4086	1999	2273	2530	1907	19204	14908	12189	589
1M		1 M	10K	9117	5000	2001	2294	2511	1920	26911	21162	17188	589
1K			100K	11221	5900	2001	2450	2316	1997	31936	25453	20066	588
1K			1 M	13729	7056	2001	4201	3080	2872	38353	30641	24095	587
100K			1 K	701	413	210	232	258	202	1937	1506	1276	63
100K		100K		1									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
DEC													
DEC 10K 1811 1062 429 530 587 429 5515 4365 3668 147													
DEC 100K 2093 1421 549 939 872 551 7263 5952 5337 285 1M 2093 1421 549 2683 1659 551 8806 7201 6516 618 1K 3491 2039 1007 1136 1265 938 9541 7404 6290 299 100K 1554 3457 2553 1127 1191 1374 1032 13573 10693 8923 340 100K 5554 3457 2348 1713 1814 1335 17485 14313 12574 755 1M 5652 3632 2584 1863 1939 1394 22057 18048 16345 2622 11 1K 6999 4081 2007 2272 2533 1998 19112 14847 12586 593 100K 11151 6468 3637 2852 3188 2329 33291 26984 22737 1050		200K		1									
DEC 1M 2093 1421 549 2683 1659 551 8806 7201 6516 618 1K 3491 2039 1007 1136 1265 938 9541 7404 6290 299 500K 10K 4537 2553 1127 1191 1374 1032 13573 10693 8923 340 100K 5554 3457 2348 1713 1814 1335 17485 14313 12574 755 1M 5652 3632 2584 1863 1939 1394 22057 18048 16345 2622 1K 6999 4081 2007 2272 2533 1998 19112 14847 12586 593 1M 10K 9094 5068 2129 2329 2714 2032 27025 21307 17707 635 100K 11151 6468 3637 2852 3188 2329<		2001											
1K 3491 2039 1007 1136 1265 938 9541 7404 6290 299 500K 10K 4537 2553 1127 1191 1374 1032 13573 10693 8923 340 100K 5554 3457 2348 1713 1814 1335 17485 14313 12574 755 1M 5652 3632 2584 1863 1939 1394 22057 18048 16345 2622 1K 6999 4081 2007 2272 2533 1998 19112 14847 12586 593 1M 10K 9094 5068 2129 2329 2714 2032 27025 21307 17707 635 100K 11151 6468 3637 2852 3188 2329 33291 26984 22737 1050	DEC			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DEC												
100K 5554 3457 2348 1713 1814 1335 17485 14313 12574 755 1M 5652 3632 2584 1863 1939 1394 22057 18048 16345 2622 1K 6999 4081 2007 2272 2533 1998 19112 14847 12586 593 1M 10K 9094 5068 2129 2329 2714 2032 27025 21307 17707 635 100K 11151 6468 3637 2852 3188 2329 33291 26984 22737 1050		F 0077											
1M 5652 3632 2584 1863 1939 1394 22057 18048 16345 2622 1K 6999 4081 2007 2272 2533 1998 19112 14847 12586 593 1M 10K 9094 5068 2129 2329 2714 2032 27025 21307 17707 635 100K 11151 6468 3637 2852 3188 2329 33291 26984 22737 1050		500K											
1K 6999 4081 2007 2272 2533 1998 19112 14847 12586 593 1M 10K 9094 5068 2129 2329 2714 2032 27025 21307 17707 635 100K 11151 6468 3637 2852 3188 2329 33291 26984 22737 1050													
1M 10K 9094 5068 2129 2329 2714 2032 27025 21307 17707 635 100K 11151 6468 3637 2852 3188 2329 33291 26984 22737 1050													
100K 11151 6468 3637 2852 3188 2329 33291 26984 22737 1050								2533					
		1 M	10K	9094	5068	2129	2329	2714	2032	27025	21307	17707	635
1M 11947 7591 5337 3729 3922 2786 44148 36123 33130 3244			100K	11151	6468	3637	2852	3188	2329	33291	26984	22737	1050
			1 M	11947	7591	5337	3729	3922	2786	44148	36123	33130	3244

 $m={
m the\ number\ of\ operations\ performed}$ $n={
m the\ number\ of\ elements\ in\ initial\ data\ structures}$

Table 2: The number of key comparisons

15

inputs	m	n	DLT	TLT	LLT	DPH	TPH	LPH	DFD	TFD	LFD	Splay
		1K	2.47	2.92	2.28	1.89	2.26	2.08	9.67	9.44	6.92	1.88
	100K	10K	2.39	1.97	1.81	1.49	1.68	1.53	2.57	4.78	4.75	1.24
		100K	2.52	3.16	1.93	2.15	2.10	2.12	8.78	11.24	6.39	1.49
		1 M	1.55	1.79	1.83	1.33	1.58	1.51	7.14	7.32	10.01	1.22
		1K	2.66	2.88	2.28	1.94	2.28	2.14	16.75	15.28	10.46	1.63
	$200 \mathrm{K}$	10K	4.69	4.70	4.08	3.66	3.69	3.51	5.14	8.39	8.38	3.17
		100K	5.11	4.14	4.20	3.26	3.29	2.79	11.80	12.05	21.82	2.57
RD1		1 M	3.74	3.65	2.54	1.79	1.64	1.72	8.85	11.10	9.05	1.95
		1K	6.45	7.62	6.14	5.12	6.07	5.36	30.63	28.69	18.18	5.04
	500K	10K	5.10	5.29	4.07	4.22	4.64	3.94	7.77	13.14	12.56	3.91
		100K	6.90	7.26	5.81	4.06	4.62	4.04	28.19	33.94	52.05	4.52
		1 M	6.28	6.63	5.45	4.50	4.19	3.84	10.35	10.94	42.49	3.21
		1 K	6.89	8.42	7.29	5.75	7.04	6.27	30.97	29.73	18.86	5.95
	1 M	10K	6.95	7.17	6.44	5.99	6.40	5.67	12.12	15.77	20.90	6.01
		100K	10.16	8.10	7.52	6.51	7.65	6.32	22.56	28.77	98.10	6.50
		1 M	9.17	10.15	8.58	7.59	7.64	6.88	17.44	21.98	122.12	6.35
		1K	2.45	2.11	2.00	1.78	1.75	1.79	8.74	7.42	5.38	1.87
	100K	10K	1.88	1.75	1.56	1.38	1.35	1.36	3.85	5.36	3.76	1.27
		100K	3.25	2.54	2.46	2.14	2.12	2.19	7.47	8.72	6.60	1.51
		1 M	2.52	1.91	1.65	1.82	1.09	1.47	7.15	7.87	7.76	0.87
		1K	2.31	2.52	2.25	1.83	2.26	1.75	16.76	14.36	7.71	1.71
	$200 \mathrm{K}$	10K	3.34	3.53	2.34	2.75	2.94	2.50	4.20	7.15	10.11	2.40
		100K	3.25	3.70	3.36	2.84	3.27	2.90	17.14	19.67	17.18	1.78
RD2		1 M	3.87	4.31	2.85	2.05	2.16	2.41	10.01	9.91	8.93	1.01
		1K	4.12	4.58	3.26	3.23	3.70	3.36	30.02	25.23	16.51	2.96
	500K	10K	3.83	4.52	3.03	3.21	4.14	3.52	8.92	12.77	16.16	3.05
		100K	6.46	6.93	5.21	5.74	5.84	4.63	27.60	33.38	39.81	3.65
		1 M	6.42	5.92	3.13	4.28	4.61	3.52	11.21	12.28	76.52	2.40
		1K	8.01	8.74	6.76	5.79	7.20	5.85	39.59	31.80	22.46	5.74
	1 M	10K	6.17	5.68	5.25	4.36	4.86	4.31	12.53	16.43	19.51	4.72
		100K	10.74	11.35	9.30	8.77	9.32	9.44	38.54	42.82	81.32	6.14
		1 M	12.00	11.08	8.47	8.60	7.76	7.55	16.51	21.36	54.28	4.41

 $m = \hbox{the number of operations performed}$ $n = \hbox{the number of elements in initial data structures}$

Table 3: Standard deviation of the number of key comparisons

16

inputs	m		DLT	TLT	LLT	DPH	TPH	LPH	DFD	TFD	LFD	Splay
mputs	711	n										
		1 K	0.112	0.102	0.080	0.105	0.103	0.089	1.112	0.803	0.651	0.058
	100K	10K	0.250	0.190	0.160	0.264	0.231	0.213	2.219	1.396	1.194	0.138
		100K	0.758	0.650	0.577	1.020	0.755	0.726	3.682	2.838	2.453	0.376
		1 M	1.311	1.199	1.029	5.093	2.983	2.914	5.283	4.174	3.648	0.615
		1 K	0.222	0.199	0.159	0.197	0.190	0.162	2.213	1.595	1.288	0.106
	200K	10K	0.405	0.320	0.266	0.415	0.377	0.336	4.378	2.731	2.289	0.216
	20011	100K	1.401	1.197	1.033	1.476	1.200	1.123	7.259	5.525	4.803	0.672
DD4												
RD1		1 M	2.552	2.320	2.110	6.115	3.851	3.853	10.830	8.463	7.361	1.225
		1 K	0.540	0.482	0.391	0.458	0.440	0.382	5.539	4.016	3.213	0.250
	500K	10K	0.789	0.647	0.526	0.713	0.677	0.613	10.832	6.676	5.495	0.402
		100K	2.787	2.431	2.059	2.460	2.088	2.029	17.753	13.420	11.118	1.238
		1 M	6.234	5.758	5.028	8.804	6.410	6.211	27.560	21.522	18.825	2.795
		1 K	1.071	0.965	0.779	0.897	0.871	0.762	11.046	7.973	6.392	0.498
	1 M	10K	1.399	1.173	0.953	1.209	1.143	1.015	21.601	13.236	10.814	0.673
		100K	4.317	3.628	3.068	3.660	3.247	3.032	34.490	25.901	21.095	1.979
						12.741		9.658	54.401		37.698	5.208
		1 M	11.865	11.189	9.838		10.071			42.460		
		1 K	0.114	0.100	0.082	0.102	0.098	0.087	1.098	0.797	0.645	0.056
	100K	10K	0.233	0.185	0.152	0.247	0.217	0.201	2.148	1.349	1.134	0.114
		100K	0.640	0.547	0.473	0.957	0.706	0.664	3.380	2.566	2.204	0.233
		1 M	0.951	0.856	0.737	5.037	2.851	2.794	4.694	3.661	3.171	0.285
		1 K	0.219	0.196	0.156	0.192	0.183	0.161	2.201	1.584	1.276	0.103
	200K	10K	0.384	0.302	0.249	0.385	0.343	0.308	4.266	2.635	2.220	0.179
	20011	100K	1.189	0.993	0.841	1.336	1.046	0.979	6.713	5.142	4.237	0.399
DDO												
RD2		1 M	1.921	1.671	1.479	5.808	3.516	3.489	9.545	7.516	6.324	0.544
		1 K	0.530	0.482	0.390	0.452	0.438	0.382	5.520	3.974	3.187	0.244
	500K	10K	0.761	0.625	0.512	0.677	0.637	0.567	10.639	6.477	5.333	0.340
		100K	2.324	1.933	1.650	2.227	1.912	1.734	16.517	12.514	10.095	0.766
		1 M	4.711	4.203	3.677	7.916	5.591	5.373	24.580	18.840	16.231	1.303
		1 K	1.048	0.946	0.765	0.878	0.854	0.744	11.014	7.928	6.350	0.480
	1 M	10K	1.326	1.120	0.915	1.153	1.091	0.956	21.251	12.964	10.542	0.587
		100K	3.660	3.112	2.693	3.329	2.751	2.534	32.839	24.610	19.589	1.191
			8.899	7.945	6.888	11.037		7.918	48.973	37.792	32.394	2.335
		1 M					8.439					
		1 K	0.136	0.095	0.051	0.067	0.071	0.060	1.110	0.748	0.632	0.036
	100K	10K	0.227	0.131	0.057	0.084	0.078	0.065	1.980	1.222	1.023	0.039
		100K	0.341	0.174	0.056	0.224	0.140	0.140	2.294	1.505	1.280	0.064
		1 M	0.587	0.298	0.057	2.162	1.100	1.083	3.247	2.261	1.849	0.574
		1 K	0.271	0.194	0.106	0.168	0.161	0.136	2.224	1.495	1.270	0.069
	200K	10K	0.401	0.240	0.107	0.204	0.172	0.148	4.010	2.395	2.029	0.073
		100K	0.674	0.335	0.112	0.368	0.237	0.221	4.498	2.954	2.494	0.095
INC		1 M	1.156	0.593	0.120	2.390	1.247	1.229	6.437	4.464	3.629	0.606
INC		1 K	0.693	0.490	0.120			0.340				0.201
	F0075					0.421	0.420		5.580	3.768	3.217	
	500K	10K	1.040	0.612	0.275	0.485	0.431	0.366	10.795	6.151	5.341	0.218
		100K	1.742	0.887	0.284	0.689	0.504	0.457	11.920	7.895	6.600	0.280
		1 M	2.776	1.405	0.290	2.662	1.489	1.423	16.113	10.976	9.087	0.775
	1	1 K	1.387	0.986	0.535	0.842	0.842	0.688	11.214	7.545	6.444	0.416
	1 M	10K	2.214	1.276	0.567	0.986	0.896	0.723	22.258	12.640	10.983	0.451
	1	100K	3.734	1.849	0.580	1.204	0.951	0.858	26.736	17.595	14.623	0.539
	1	1 M	5.646	2.862	0.592	3.167	1.910	1.806	32.060	21.748	18.056	1.231
	 	1 K	0.139	0.098	0.056	0.084	0.083	0.068	1.115	0.760	0.606	0.035
	100K	10K	0.139	0.035	0.086	0.103	0.099	0.079	2.150	1.339	1.090	0.045
	100K											
		100K	0.235	0.164	0.117	0.131	0.119	0.089	3.201	2.264	1.958	0.087
		1 M	0.250	0.160	0.112	0.138	0.120	0.096	4.559	3.556	2.843	0.724
		1 K	0.271	0.195	0.105	0.166	0.166	0.133	2.230	1.517	1.210	0.071
	$200 \mathrm{K}$	10K	0.410	0.262	0.112	0.213	0.201	0.145	4.360	2.604	2.076	0.079
	1	100K	0.595	0.375	0.140	0.482	0.338	0.191	6.638	4.760	4.138	0.173
DEC	1	1 M	0.582	0.364	0.135	2.407	1.204	0.188	9.276	7.275	5.907	0.688
		1 K	0.699	0.492	0.265	0.424	0.420	0.331	5.562	3.760	2.975	0.207
	500K	10K	1.058	0.638	0.300	0.468	0.472	0.368	11.172	6.396	5.134	0.220
	55011	100K	1.704	0.955	0.637	0.665	0.604	0.489	16.824	12.012	10.101	0.365
	1											
		1 M	1.816	1.031	0.715	0.721	0.646	0.502	23.953	18.327	15.226	1.085
	1	1 K	1.396	0.988	0.530	0.841	0.845	0.679	11.079	7.515	5.971	0.419
	1 M	10K	2.191	1.262	0.571	0.918	0.921	0.707	22.387	12.717	10.145	0.449
	1	100K	3.549	1.929	1.036	1.168	1.089	0.854	33.389	23.052	18.158	0.623
	1	1 M	4.100	2.335	1.535	1.433	1.276	0.996	47.838	36.422	31.004	1.710
	•		•		•			•		•	•	•

 $\label{eq:model} {\it Time~Unit}: sec \\ m = {\it the~number~of~operations~performed} \\ n = {\it the~number~of~elements~in~initial~data~structures}$

Table 4: Run time using real (double) keys

inputs	m	n	DLT	TLT	LLT	DPH	TPH	LPH	DFD	TFD	LFD	Splay
		1K	0.006	0.006	0.004	0.005	0.005	0.004	0.015	0.008	0.008	0.004
	100K	10K	0.013	0.007	0.007	0.018	0.013	0.012	0.026	0.027	0.015	0.007
		100K	0.064	0.075	0.067	0.085	0.069	0.063	0.094	0.098	0.081	0.028
		1 M	0.088	0.067	0.052	0.224	0.163	0.138	0.128	0.112	0.123	0.040
	00017	1K 10K	0.006	0.006	0.005	0.007	0.005	0.004	0.023	0.020	0.017	0.005
	200K	10K 100K	$0.014 \\ 0.124$	0.009 0.117	0.009 0.100	0.032 0.104	$0.022 \\ 0.102$	0.019 0.077	0.049 0.257	0.047 0.152	$0.031 \\ 0.127$	0.011 0.045
RD1		1 M	0.124	0.117	0.159	0.230	0.201	0.453	0.282	0.174	0.143	0.076
		1K	0.015	0.018	0.012	0.011	0.008	0.008	0.048	0.150	0.047	0.004
	500K	10K	0.015	0.017	0.015	0.026	0.027	0.024	0.146	0.138	0.059	0.015
		100K	0.186	0.242	0.184	0.099	0.095	0.139	0.492	0.277	0.250	0.071
		1 M	0.329	0.366	0.235	0.403	0.359	0.309	0.748	0.373	0.376	0.173
	1 M	1K 10K	0.024 0.046	0.029 0.022	$0.025 \\ 0.022$	0.021 0.047	0.014 0.028	0.017 0.024	0.120 0.380	0.090	$0.062 \\ 0.217$	0.008 0.018
	1 1/1	10K 100K	0.040	0.022	0.022	0.205	0.028	0.024	0.514	0.229 0.359	0.346	0.120
		1 M	0.332	0.405	0.360	0.476	0.355	0.388	0.687	0.525	0.563	0.211
		1K	0.006	0.005	0.004	0.005	0.004	0.005	0.012	0.013	0.008	0.005
	100K	10K	0.009	0.011	0.006	0.017	0.012	0.014	0.031	0.021	0.019	0.005
		100K	0.054	0.074	0.059	0.086	0.073	0.064	0.098	0.079	0.090	0.011
		1 M	0.036	0.042	0.035	0.163	0.123	0.127	0.122	0.106	0.081	0.015
	00017	1K	0.008	0.006	0.006	0.005	0.005	0.005	0.023	0.013	0.013	0.005
	200K	10K 100K	0.011 0.133	0.012 0.116	0.008 0.096	0.030 0.085	0.023 0.066	0.016 0.061	0.053 0.165	0.043 0.148	0.124 0.126	0.011 0.021
RD2		1 M	0.108	0.087	0.089	0.208	0.154	0.174	0.182	0.345	0.147	0.021
		1K	0.015	0.017	0.013	0.013	0.008	0.011	0.074	0.054	0.029	0.007
	500K	10K	0.024	0.014	0.015	0.032	0.031	0.032	0.139	0.082	0.060	0.011
		100K	0.165	0.171	0.137	0.145	0.164	0.118	0.240	0.292	0.178	0.036
		1 M	0.225	0.252	0.192	0.263	0.216	0.250	0.559	0.300	0.243	0.063
	136	1K	0.029	0.016	0.020	0.017	0.014	0.015	0.116	0.054	0.041	0.009
	1 M	10K 100K	0.021 0.215	0.029 0.204	$0.025 \\ 0.228$	0.054 0.209	$0.042 \\ 0.143$	0.037 0.133	0.235 0.443	0.184 0.354	0.093 0.321	0.016 0.029
		1 M	0.411	0.338	0.322	0.298	0.251	0.106	0.720	0.461	0.424	0.023
		1K	0.007	0.005	0.003	0.005	0.002	0.000	0.007	0.005	0.004	0.005
	100K	10K	0.011	0.009	0.013	0.007	0.004	0.005	0.030	0.028	0.016	0.002
		100K	0.022	0.016	0.005	0.026	0.008	0.018	0.029	0.023	0.009	0.011
		1 M	0.039	0.018	0.006	0.237	0.103	0.096	0.088	0.054	0.044	0.018
	200K	1K	0.007	0.005	0.005	0.004	0.004	0.006	0.017	0.009	0.010	0.002
	200K	10K 100K	0.015 0.053	0.009 0.025	0.005 0.004	0.017 0.025	0.009 0.009	0.010 0.010	0.070 0.045	0.053 0.031	0.018 0.047	0.005 0.011
INC		1 M	0.092	0.025	0.004	0.020	0.082	0.076	0.165	0.118	0.041	0.024
		1K	0.024	0.011	0.006	0.022	0.012	0.012	0.037	0.031	0.033	0.008
	500K	10K	0.033	0.019	0.006	0.034	0.020	0.015	0.097	0.060	0.048	0.009
		100K	0.147	0.065	0.010	0.032	0.019	0.018	0.089	0.116	0.089	0.022
		1 M	0.199	0.089	0.008	0.109	0.058	0.038	0.189	0.137	0.125	0.027
	1 M	1K 10K	0.046 0.097	$0.022 \\ 0.073$	$0.010 \\ 0.025$	0.022 0.048	$0.024 \\ 0.031$	0.019 0.021	0.088 0.136	0.054 0.198	0.037 0.109	0.012 0.015
	1 141	10K 100K	0.326	0.073	0.023	0.048	0.031	0.021	0.130	0.146	0.105	0.013
		1 M	0.407	0.212	0.015	0.101	0.062	0.060	0.292	0.154	0.188	0.049
		1K	0.006	0.005	0.005	0.007	0.005	0.005	0.014	0.008	0.007	0.005
	100K	10K	0.008	0.005	0.007	0.006	0.005	0.007	0.034	0.042	0.017	0.005
		100K	0.014	0.007	0.004	0.008	0.006	0.008	0.059	0.032	0.031	0.013
		1 M	0.019	0.006	0.004	0.010	0.008	0.019	0.155	0.111	0.110	0.028
	200K	1K 10K	0.009 0.015	0.007 0.007	0.006 0.007	0.009 0.018	0.005 0.011	0.009 0.007	0.027 0.064	0.018 0.065	$0.014 \\ 0.024$	0.004 0.005
	2001	10K 100K	0.013	0.007	0.007	0.013	0.011	0.007	0.004	0.131	0.104	0.003
DEC		1 M	0.052	0.023	0.009	0.115	0.074	0.009	0.273	0.223	0.193	0.024
		1K	0.022	0.007	0.007	0.020	0.012	0.014	0.035	0.029	0.016	0.009
	500K	10K	0.039	0.020	0.015	0.032	0.016	0.018	0.113	0.052	0.054	0.012
		100K	0.139	0.031	0.022	0.022	0.019	0.022	0.207	0.197	0.149	0.040
		1 M	0.124	0.064	0.039	0.031	0.023	0.019	0.282	0.202	0.262	0.088
	1 M	1K 10K	0.050 0.068	0.023 0.034	0.010 0.017	0.034 0.040	0.019 0.027	0.016 0.031	0.068 0.167	0.049 0.134	$0.042 \\ 0.057$	0.012 0.016
	1 1/1	10K 100K	0.008	0.034	0.017	0.040	0.027	0.031	0.107	0.134	0.037	0.016
		1 M	0.268	0.131	0.072	0.037	0.024	0.026	0.433	0.256	0.309	0.091
			-						1			

 $\label{eq:mass} \begin{array}{l} {\rm Time~Unit}:sec \\ \\ m={\rm the~number~of~operations~performed} \\ \\ n={\rm the~number~of~elements~in~initial~data~structures} \end{array}$

Table 5: Standard deviation of run time using real keys

An experimental comparison of leaf correspondence leftist trees and unbalanced binary search trees, min-max heaps, deaps, AVL trees etc. appears in [6]. The conclusion of [6] for keys of data type double, is that unbalanced binary search trees are the best data structure when keys are selected at random; leaf correspondence leftist trees are the best data structure when keys are in ascending or descending order. Our experimental study is modeled after that used in [7]. Each timing experiment began with a DEPQ with an initial size $n \in \{1000, 10000, 100000, 1000000\}$ and performed a sequence of $m \in \{100000, 200000, 500000, 1000000\}$ DEPQ operations. Insert operations occurred with probability 0.5, and delete max and delete min had probability 0.25 each. The insert keys were selected in four different ways:

- RD1: random double precision keys between 1 and 1,000,000
- RD2: random double precision keys between 1 and 1,000
- INC: increasing sequence of double precision keys
- DEC: decreasing sequence of double precision keys

Although the keys are double precision, their actual values are integral, an integer random number generator was used and the numbers typecast to the double data type. All programs were written in C and run on a SUN Ultra Sparc workstation. For each choice of n, m and data set (RD1,RD2) 20 experiments were done, the average results are reported. Table 2 gives the number of key comparisons performed (x1000) and Table 3 gives the standard deviations for RD1 and RD2 (over the 20 experiments). The standard deviations are rather small, boosting our confidence in the reliability of the experiments. For leftist trees, pairing heaps and FMPQs, leaf correspondence made the fewest number of comparisons in all our experiments. For leftist trees and paring heaps, dual correspondence was always inferior to total correspondence, which, in turn, was always inferior to leaf correspondence. In fact, in the INC data set dual correspondence leftist trees made seven times as many comparisons as did leaf correspondence leftist trees for some combinations of n and m. On the comparison count measure, dual correspondence worked better than total correspondence only for pairing haps with $n \in \{1K, 10K\}$ and for data set DEC with m = 100K and all tested n. Of the priority queue structures used by us, leaf correspondence pairing heaps generally outperformed the others. But, even leaf correspondence priority queues were, often, no match for splay trees.

Table 4 gives the runtimes for the various methods, and Table 5 gives the standard deviations in runtime. Once again, the standard deviations are relatively small. The leaf correspondence version of each data structures was, almost always, superior to the total correspondence version; and the total correspondence version was always superior to the dual correspondence version. Of the priority queue structures used by us, leaf correspondence leftist trees took least time almost always. In fact, leaf correspondence leftist trees took one-sixth the time taken by leaf correspondence pairing heaps and one-twentieth the time taken by leaf correspondence FMPQs

on some data sets. Even though leaf correspondence leftist trees were faster than the other priority queue structure, they were generally slower than splay trees, at times taking three times as much time. Note, however, that splay trees are not efficiently meldable, whereas leaf correspondence leftist trees may be melded in logarithmic time.

7 Conclusion

We have shown the general applicability of correspondence methods to arrive at double-ended priority queue structures from single-ended priority queue structures. Experimental studies conducted by us indicate that leaf correspondence leftist trees are superior to the other correspondence structures considered. However, even leaf correspondence leftist trees are unable to outperform splay trees on random data.

References

- [1] M. Atkinson, J. Sack, N. Santoro, and T. Strothotte, Min-max heaps and generalized priority queues, *Communications of the ACM*, 29, 996-1000, 1986.
- [2] G. Brodal, Fast meldable priority queues, Workshop on Algorithms and Data Structures, 1995.
- [3] S. Carlsson, The deap A double ended heap to implement double ended priority queues, *Information Processing Letters*, 26, 33-36, 1987.
- [4] S. Chang and M. Du, Diamond deque: A simple data structure for priority deques, *Information Processing Letters*, 46, 231-237, 1993.
- [5] C. Crane, Linear lists and priority queues as balanced binary trees, Technical Report CS-72-259, Computer Science Department, Stanford University,
- [6] S. Cho and S. Sahni, Weight biased leftist trees and modified skip lists, to appear in ACM Jr. on Experimental Algorithms.
- [7] S. Cho and S. Sahni, Mergeable double ended priority queue, to appear in International Journal on Foundation of Computer Sciences
- [8] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, The paring heap: A new form of self-adjusting heap, Algorithmica, 1:111-129, 1986.
- [9] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, JACM, 34:3, 596-615, 1987.

- [10] E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, NY, 1995.
- [11] J. van Leeuwen and D. Wood, Interval heaps, The Computer Journal, 36, 3, 209-216, 1993.
- [12] S. Olariu, C. Overstreet, and Z. Wen, A mergeable double-ended priority queue, *The Computer Journal*, 34, 5, 423-427, 1991.
- [13] D. Sleator and R. Tarjan, Self-adjusting binary search trees, JACM, 32:3, 652-686, 1985.
- [14] D. Sleator and R. Tarjan, Self-adjusting heaps, SIAM Journal on Computing, 15,1, 52-69, 1986.
- [15] J. T. Stasko and J. S. Vitter, Pairing heaps: Experiments and Analysis, Communication of the ACM, 30:3, 234-249, 1987.
- [16] R. Tarjan, Data structures and network algorithms, SIAM, Philadelphia, PA, 1983.
- [17] J. Williams, Algorithm 232, Communications of the ACM, 7, 347-348, 1964.