COP 5536 Advanced Data Structures

University of Florida

Instructor: Dr. Sartaj Sahni

Exam 1 Solution

Prepared by: Yian Zhou

Question 1

a) Implement a QUEUE with two STACKs having constant amortized cost for each QUEUE operation (6 points).

Name the two STACKs as Stack ${ }_{1}$ and Stack ${ }_{2}$, we can implement the QUEUE as follows:

- ENQUEUE(x): PUSH x into Stack ${ }_{1}$
- DEQUEUE(x): If Stack is $_{2}$ not empty, then simply POP from Stack ${ }_{2}$ and return the element. If Stack ${ }_{2}$ is empty, POP all the elements of Stack ${ }_{1}$, PUSH them into Stack $_{2}$, then POP from Stack 2_{2} and return the result.
b) Choose any two from the three methods to prove the amortized cost for each QUEUE operation is O(1) (4 points each).
- Aggregate method

Consider a sequence of n operations. The sequence of operations will involve at most n elements. The cost associated with each element will be at most 4 i.e. (pushed into Stack ${ }_{1}$, popped from Stack ${ }_{1}$, pushed to Stack $_{2}$, and popped from Stack ${ }_{2}$). Hence, the actual cost of n operations will be upper bounded by $T(n)=4 n$. Hence, the amortized cost of each operation can be $T(n) / n=4 n / n=4=O(1)$.

- Accounting method

We guess that the amortized costs for ENQUEUE and DEQUEUE are 3 and 1. We show that the potential function $P(n)$ satisfies $P(n)-P(0)>=0$ for all n.

We have $P(0)=0$. If an element is not popped, then it's only pushed twice and popped once. Thus, the cost of 3 is paid for by ENQUEUE operation. The cost for last pop operation is paid for by the DEQUEUE.

Note: Alternatively, we can set the costs for ENQUEUE and DEQUEUE as 4 and 0 respectively.

- Potential method

We guess the potential function $P(n)=2 *$ \#Elements in Stack $_{1} . P(0)=0$ and $P(n)-$ $P(0)>=0$ for all n.
$>$ ENQUEUE: Actual cost of PUSH is 1 . Number of elements in Stack ${ }_{1}$ increases by 1 and Delta P increases by 2 . Amortized cost $=$ actual cost $+\Delta P=1+2=3$.
$>$ DEQUEUE:
\checkmark If Stack 2 is not empty. Actual cost of DEQUEUE is 1. The \#Element in Stack stays the same, i.e. $\Delta P=0$. Amortized cost $=$ actual cost $+\Delta P=1+0=1$.
\checkmark If Stack 2 is empty. Let $x=$ \#Elements in Stack1. The actual cost of POP is $2 x$. The $\Delta \mathrm{P}=0-2 \mathrm{x}=-2 \mathrm{x}$. Amortized cost $=$ actual $\operatorname{cost}+\Delta \mathrm{P}=(2 \mathrm{x}+1)+(-2 \mathrm{x})=1$.

Therefore, the amortized costs for ENQUEUE and DEQUEUE are 3 and 1 respectively.

Question 2

a) (4 points) Note that the length of a path is the number of nodes along that path. For example, the leftmost path and the rightmost path of the tree below have length 3 and 2, respectively.

The longest possible length of the rightmost path of a leftist tree of n nodes will be the largest k so that $2^{k} \leq n+1$. When $n=16$, we have $k=4$. The longest possible leftmost path will have length n when the tree is actually a line. When $n=16$, the longest possible leftmost path has length 16.

If we define the path length as the number of edges along that path, corresponding answers will be 3 for the rightmost path and 15 for the leftmost path.
b) (6 points)

Merge right tree of B with A

and make it the right tree of B

Note: there is NO need to swap the left and right trees in the last step.

Question 3

a) (7 points)

Merge (0, 100, 200, 400) into 700 records.
Merge (700, 600, 700, 900) into 2900 records.
b) (7 points)

I/O time: $(700+2900) / 100 * 2 * 2=144$ seconds.
CPU time: $(700+2900) / 100$ * $1=36$ seconds.
Total time: $144+36=180$ seconds.

Question 4

a) (4 points) All trees in the binominal heap are binominal trees. Max degree in a binominal tree is $\mathrm{O}(\log \mathrm{n})$ (proof by induction).
b) (8 points)

