Backtracking And Branch And Bound

.

Subset & Permutation Problems

e Subset problem of size
= Nonsystematic search of the space for the anskes t|
O(p2") time, wherep is the time needed to evaluate)
each member of the solution space.
» Permutation problem of size
= Nonsystematic search of the space for the answes {|
O(pn!)time, wherep is the time needed to evaluate
each member of the solution space.
» Backtracking and branch and bound perform a
systematic search; often taking much less time
than taken by a nonsystematic search.

Tree Organization Of Solution Spacge

e Set up a tree structure such that the leaves
represent members of the solution space.

 For a sizen subset problem, this tree structure hg
2" leaves.

 For a sizen permutation problem, this tree
structure has! leaves.

» The tree structure is too big to store in memory;
also takes too much time to create the tree
structure.

 Portions of the tree structure are created by the
backtracking and branch and bound algorithms &s
needed.

)

—

Subset Problem

Use a full binary tree that hasleaves.

At leveli the members of the solution space
are partitioned by their; values.

* Members withx; = 1 are in the left subtree.
» Members withx; = O are in the right subtree.

Could exchange roles of left and right
subtree.

Subset Tree Forn =4

1110 1011

Permutation Problem

Use a tree that has leaves.

At leveli the members of the solution space
are partitioned by their; values.

Members (if any) with; = 1 are in the first
subtree.

Members (if any) withx; = 2 are in the next
subtree.

And so on.

Permutation Tree Forn =3

Backtracking

Search the solution space tree in a depth-
first manner.

May be done recursively or use a stack to
retain the path from the root to the current
node in the tree.

The solution space tree exists only in your
mind, not in the computer.

Backtracking Depth-First Search

Il

Backtracking Depth-First Search

Il

Backtracking Depth-First Search

Backtracking Depth-First Search

UJ

Backtracking Depth-First Search O(2") Subet Sum & Bounding Function
{10, 5,2, 1}, c = 14

Il

Each forward and backward move takid)time.

Bounding Functions Backtracking

« When a node that represents a subset whose sum
equals the desired sumterminate. With effective bounding functi | st
« When a node that represents a subset whose sum 'th etiective bounding functions, farge instanqes

exceeds the desired sunbacktrack. l.e., do not| can often be solved.
enter its subtrees, go back to parent node. * For some problems (eag" cl)/tl knapsacg),]:che g
< Keep a variable that gives you the sum of the answer (or a very good solution) may be foun

numbers not yet considered. When you move {o a quickly but a lot of additional time is needed to

. . . complete the search of the tree.
right child, check ifcurrent subset sum +r >= ¢ P) ;))
If not. backtrack. * Run backtracking for as much time as is feasible

and use best solution found up to that time.

e Space required i®(tree height)

Branch And Bound

» Search the tree using a breadth-first seéftdhO
branch and bound)

» Search the tree as in a bfs, but replace the FIFD

gueue with a stacf.IFO branch and bound)

* Replace the FIFO queue with a priority queue
(least-cost (or max priority) branch and bound)
The priority of a node in the queue is based on
an estimate of the likelihood that the answer ng
is in the subtree whose rootgs

de

Branch And Bound

» Space required i®(number of leaves)

* For some problems, solutions are at different
levels of the tree (e.g., 16 puzzle).

2.141 1[2]3[4
13| 2| 3[12] 5/ 6/7]8
6/115]10 9101112
9| 8| 7|15 13[14 1

Branch And Bound

= FIFO branch and bound finds solution closest ta.ro

= Backtracking may never find a solution because tre|
depth is infinite (unless repeating configuratiens
eliminated).

* Least-cost branch and bound directs the searc
parts of the space most likely to contain the
answer. So it could perform better than
backtracking.

h to

