a Single-Source All-Destinationa

Shortest Paths With Negative Cos

Directed weighted graph.
Edges may have negative cost.
No cycle whose cost is 0.

Find a shortest path from a given source verte
sto each of thex vertices of the digraph.

[S

Single-Source All-Destinations
Shortest Paths With Negative Cos

« Dijkstra’s O(r?) single-source greedy algorithm
doesn’'t work when there are negative-cost
edges.

* Floyd's Theta(r) all-pairs dynamic-
programming algorithm does work in this case

Bellman-Ford Algorithm

Single-source all-destinations shortest paths in

digraphs with negative-cost edges.
Uses dynamic programming.

Runs inO(®) time when adjacency matrices
are used.

Runs inO(ne)time when adjacency lists are
used.

Decision Sequence
O——w-9

» To construct a shortest path from the source to
vertexv, decide on the max number of edges on
path and on the vertex that comes just before

« Since the digraph has no cycle whose lengthGs
we may limit ourselves to the discovery of cycle-
free (acyclic) shortest paths.

A path that has no cycle has at mostedges.

the

Problem State
—W O

* Problem state is given ljy k), whereu is the
destination vertex anklis the max number of
edges.

¢ (v,n-1)is the state in which we want the shortes}
path tov that has at most-1 edges.

Cost Function
—W O

e Letd(v,k) be the length of a shortest path from the
source vertex to vertexunder the constraint that
the path has at mostedges.

« d(v,n-1)is the length of a shortest unconstrained
path from the source vertex to vertex

« We want to determineé(v,n-1)for every vertex.

Value Of d(*,0)

 d(v,0)is the length of a shortest path from the
source vertex to vertexunder the constraint that
the path has at mo8tedges.

®

* d(s,00=0
¢ d(v,0) = infinityforv !=s.

Recurrence For d(*,k), k >0

e d(v,k) is the length of a shortest path from the
source vertex to vertexunder the constraint that
the path has at mostedges.

« If this constrained shortest path goes through nd
edge, thenl(v,k) = d(v,0)

Recurrence For d(*,k), k >0

« If this constrained shortest path goes through a
least one edge, then Istbe the vertex just before
on this shortest path (note thaimay bes).

&——0 -0

* We see that the path from the source/tmust be
a shortest path from the source vertex to veitex|
under the constraint that this path has at rkdst
edges.

¢ d(v,k) = d(w,k-1) + length of edge (w,v)

Recurrence For d(*,k), k >0

d(v,k) = d(w,k-1) + length of edge (w,v)
&———B -0

We do not know what is.

We can assert

= d(v,k) = min{d(w,k-1) + length of edge (w,v)vhere
theminis taken over allv such thatw,v) is an edge of
the digraph.

Combining the two cases considered yields:
= d(v,k) = min{d(v,0),
min{d(w,k-1) + length of edge (w,v)}}

Pseudocode To Compute d(*,*)
[l initialize d(*,0)
d(s,0) =0;
d(v,0) = infinity, v !='s;
/l compute d(*,k), 0 <k<n
for (intk = 1; k < n; k++)
{

d(v,k) =d(v,0), 1 <=v<=n;

for (each edge (u,v))

d(v,k) = min{d(v,k), d(u,k-1) + cost(u,v)}

Complexity 9

Theta(n)to initialize d(*,0).

Theta(r) to computed(*,k) for eachk > Owhen
adjacency matrix is used.

Theta(e)to computed(*,k) for eachk > Owhen
adjacency lasts are used.

Overall time isTheta(r¥) when adjacency matrix ig
used.

Overall time isTheta(newhen adjacency lists are
used.

Theta(r) space needed foi(*,*).

p(*.*)

e Letp(v,k) be the vertex just before vertex
on the shortest path fdfv,k).

* p(v,0)is undefined.
< Used to construct shortest paths.

Example

Source vertex i§.

1 2 3 45 V. —> 1 2 3 45 \"
0|-{-|-]-[- il el el Il)l 4 4102167108 -16(2]1(3]4k
11003 -|7]-|- '1'1"l 5(01216(719]8 '62134l
21013]77]168 “11(2]1(4(4
3|0f2|7(7]108 -1612(1(3]4
410(216(7]108 -1612[1(3]4

d(v,k) p(v.k) d(v,k) p(v.k)

Sholrtest Path From 1 To 5

123456

Observations

¢ d(v,k) = min{d(v,0),
min{d(w,k-1) + length of edge (w,Vv)}}
¢ d(s,k) = Ofor all k.
o If d(v,k) = d(v,k-L)for all v, thend(v,j) = d(v,k-1)
for allj >= k-1and allv.
« If we stop computing as soon as we hawg*ek)

123456 that is identical tal(*,k-1) the run time becomes
5|0[2[6[7[9[8| l'[6[2[1[3[4‘ = O(n®) when adjacency matrix is used.
d(v,5) p(v,5) = O(ne)when adjacency lists are used.
Observations

The computation may be done in-place.

d(v) = min{d(v), min{d(w) + length of edge (w,v)}}

instead of

d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

Following iterationk, d(v,k+1) <= d(v) <= d(v,k)
On terminatiord(v) = d(v,n-1)
Space requirement becomeé) for d(*) and
p(*).

