a Single-Source All-Destinations
Shortest Paths With Negative Cos

Directed weighted graph.
Edges may have negative cost.
No cycle whose cost is 0.

Find a shortest path from a given source verte
sto each of the vertices of the digraph.

X

Single-Source All-Destinations
Shortest Paths With Negative Cos

« Dijkstra’s O(r¥) single-source greedy algorithm
doesn’t work when there are negative-cost
edges.

 Floyd's Theta(r¥) all-pairs dynamic-

programming algorithm does work in this case}|

Bellman-Ford Algorithm

» Single-source all-destinations shortest paths in
digraphs with negative-cost edges.

* Uses dynamic programming.
* Runs inO(r®) time when adjacency matrices
are used.

* Runs inO(ne)time when adjacency lists are
used.

Decision Sequence
WY

e To construct a shortest path from the source to
vertexv, decide on the max number of edges onthe
path and on the vertex that comes just before

 Since the digraph has no cycle whose length(s
we may limit ourselves to the discovery of cycle-
free (acyclic) shortest paths.

» A path that has no cycle has at mostedges.

Problem State
W V)

* Problem state is given ljy,k), whereu is the
destination vertex anklis the max number of

edges.
* (v,n-1)is the state in which we want the shortest
path tov that has at most-1 edges.

Cost Function
W V)

e Letd(v,k) be the length of a shortest path from t
source vertex to vertexunder the constraint that
the path has at mostedges.

 d(v,n-1)is the length of a shortest unconstrainec
path from the source vertex to vertex

* We want to determine(v,n-1)for every vertex.

Value Of d(*,0)

e d(v,0)is the length of a shortest path from the
source vertex to vertexunder the constraint that
the path has at mo8tedges.

®

e d(s,0)=0
e d(v,0) = infinityforv !=s.

Recurrence For d(*,k), k>0

 d(v,k)is the length of a shortest path from the
source vertex to vertexunder the constraint that
the path has at mostedges.

« If this constrained shortest path goes through nc
edge, thenl(v,k) = d(v,0)

Recurrence For d(*,k), k>0

« If this constrained shortest path goes through af
least one edge, then letbe the vertex just before
on this shortest path (note thamay bes).

&———0 -0

* We see that the path from the source/tmust be
a shortest path from the source vertex to ventex
under the constraint that this path has at rkdist
edges.

e d(v,k) = d(w,k-1) + length of edge (w,v)

Recurrence For d(*,k), k>0

d(v,k) = d(w,k-1) + length of edge (w,v)
&——wB -0

We do not know what is.

We can assert
» d(v,k) = min{d(w,k-1) + length of edge (w,v)where
themin is taken over allv such thatw,v) is an edge of
the digraph.
Combining the two cases considered yields:
= d(v,k) = min{d(v,0),
min{d(w,k-1) + length of edge (w,v)}}

Pseudocode To Compute d(*,*)
// initialize d(*,0)
d(s,0) = 0;
d(v,0) = infinity, v I='s;
/[compute d(*,k), 0 <k <n
for (intk = 1; k < n; k++)
{

d(v,k) =d(v,0), 1 <=v <=n;

for (each edge (u,v))

d(v,k) = min{d(v,k), d(u,k-1) + cost(u,v)}

Complexity

Theta(n)to initialize d(*,0).
Theta(rf) to computed(*,k) for eachk > Owhen
adjacency matrix is used.

Theta(e)to computel(*,k) for eachk > Owhen
adjacency lasts are used.

Overall time isTheta(i§) when adjacency matrix is
used.

Overall time isTheta(newhen adjacency lists are
used.

Theta(rf) space needed fai(*,*).

p(**)

» Letp(v,k) be the vertex just before vertex
on the shortest path fd(v,k).

* p(v,0)is undefined.
» Used to construct shortest paths.

Example

Source vertex i§.

1 2 3 456

|

U L S a g g
<t o[on
| | |
o e e e
1| | | o ©
e [T [

1| v | co| oof co
IHEEE
e | =] | I~
I I)
v [on] ool eNf e
o|o|o|o|o
O d ANM <

p(v.k)

d(v,k)

1 2 3 45 6

X
<| <
oo
i
N
ol w©
1
ool oo
Olo
~| ~
ol w©
N
olo
< WO

p(v.k)

d(v,k)

Sholrtest Path From 1 To 5

1 2 345 6 1 2 3 45 6
slo]2]6]7]9]8 -l6]2]1]3]4
d(v,5) p(v,5)

Observations

d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}
d(s,k) = Ofor all k.
If d(v,k) =d(v,k-1)for all v, thend(v,j) = d(v,k-1)
for allj >= k-1and allv.

If we stop computing as soon as we havk*ak)
that is identical tal(*,k-1) the run time becomes
= O(n®) when adjacency matrix is used.

* O(ne)when adjacency lists are used.

Observations

The computation may be done in-place.

d(v) = min{d(v), min{d(w) + length of edge (w,v)}}

instead of

d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,Vv)}}

Following iterationk, d(v,k+1) <= d(v) <= d(v,k)
On terminatiord(v) = d(v,n-1)
Space requirement beconte&) for d(*) and
p(*).

