
Single-Source All-Destinations 
Shortest Paths With Negative Costs

• Directed weighted graph.

• Edges may have negative cost.

• No cycle whose cost is < 0.

• Find a shortest path from a given source vertex
s to each of the n vertices of the digraph.

Single-Source All-Destinations 
Shortest Paths With Negative Costs

• Dijkstra’s O(n2) single-source greedy algorithm 
doesn’t work when there are negative-cost 
edges.

• Floyd’s Theta(n3) all-pairs dynamic-
programming algorithm does work in this case.



Bellman-Ford Algorithm

• Single-source all-destinations shortest paths in 
digraphs with negative-cost edges.

• Uses dynamic programming.

• Runs in O(n3) time when adjacency matrices 
are used.

• Runs in O(ne)time when adjacency lists are 
used.

Decision Sequence

• To construct a shortest path from the source to 
vertex v, decide on the max number of edges on the 
path and on the vertex that comes just before v.

• Since the digraph has no cycle whose length is < 0, 
we may limit ourselves to the discovery of cycle-
free (acyclic) shortest paths.

• A path that has no cycle has at most n-1 edges.

s w v



Problem State

• Problem state is given by (u,k), whereu is the 
destination vertex andk is the max number of 
edges.

• (v,n-1) is the state in which we want the shortest 
path to v that has at most n-1 edges.

s w v

Cost Function

• Let d(v,k) be the length of a shortest path from the 
source vertex to vertex v under the constraint that 
the path has at mostk edges.

• d(v,n-1)is the length of a shortest unconstrained 
path from the source vertex to vertex v.

• We want to determine d(v,n-1)for every vertex v.

s w v



Value Of d(*,0)

• d(v,0) is the length of a shortest path from the 
source vertex to vertex v under the constraint that 
the path has at most0 edges.

s

• d(s,0) = 0.

• d(v,0) = infinity for v != s.

Recurrence For d(*,k), k > 0

• d(v,k) is the length of a shortest path from the 
source vertex to vertex v under the constraint that 
the path has at mostk edges.

• If this constrained shortest path goes through no 
edge, then d(v,k) = d(v,0).



Recurrence For d(*,k), k > 0

• If this constrained shortest path goes through at 
least one edge, then let w be the vertex just before v 
on this shortest path (note that w may be s).

s w v

• We see that the path from the source to w must be 
a shortest path from the source vertex to vertex w 
under the constraint that this path has at mostk-1 
edges.

• d(v,k) = d(w,k-1) + length of edge (w,v).

Recurrence For d(*,k), k > 0

• We do not know what w is.

• We can assert
� d(v,k) = min{d(w,k-1) + length of edge (w,v)}, where 

the min is taken over all w such that (w,v) is an edge of 
the digraph.

• Combining the two cases considered yields:
� d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

s w v

• d(v,k) = d(w,k-1) + length of edge (w,v).



Pseudocode To Compute d(*,*)
// initialize d(*,0)

d(s,0) = 0;

d(v,0) = infinity, v != s;

// compute d(*,k), 0 < k < n

for (int k = 1; k < n; k++)

{

d(v,k) = d(v,0), 1 <= v <= n;

for (each edge (u,v))

d(v,k) = min{d(v,k), d(u,k-1) + cost(u,v)}

}

Complexity

• Theta(n) to initialize d(*,0).

• Theta(n2) to compute d(*,k) for each k > 0 when 
adjacency matrix is used.

• Theta(e) to compute d(*,k) for each k > 0 when 
adjacency lasts are used.

• Overall time is Theta(n3) when adjacency matrix is 
used.

• Overall time is Theta(ne) when adjacency lists are 
used.

• Theta(n2) space needed for d(*,*) .



p(*,*)

• Let p(v,k) be the vertex just before vertex v 
on the shortest path ford(v,k).

• p(v,0) is undefined.

• Used to construct shortest paths.

Example

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

Source vertex is 1.

1



Example

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

1

d(v,k) p(v.k)

1 2 3 4
0

1

2
3

5 6 v
k0 - - - - - - - - - - -

0 -3 1- -7 1- -- -

4

0 -3 17 27 116 48 4
0 -2 67 27 110 38 4
0 -2 66 27 110 38 4

Example

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

1

d(v,k) p(v.k)

1 2 3 4
4

5

5 6 v
k0 -2 66 27 110 38 4

0 -2 66 27 19 38 4



Shortest Path From 1 To 5

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

1

d(v,5) p(v,5)

1 2 3 4
5

5 6
- 6 2 1 3 40 2 6 7 9 8
1 2 3 4 5 6

Observations

• d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

• d(s,k) = 0 for all k.

• If d(v,k) = d(v,k-1)for all v, then d(v,j) = d(v,k-1), 
for all j >= k-1 and all v.

• If we stop computing as soon as we have ad(*,k)
that is identical to d(*,k-1) the run time becomes
� O(n3) when adjacency matrix is used.

� O(ne)when adjacency lists are used.



Observations

• The computation may be done in-place.
d(v) = min{d(v), min{d(w) + length of edge (w,v)}}

instead of

d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

• Following iteration k, d(v,k+1) <= d(v) <= d(v,k)

• On terminationd(v) = d(v,n-1).

• Space requirement becomes O(n) for d(*) and 
p(*).


