a All-Pairs Shortest Paths

< Given anmn-vertex directed weighted graph,
find a shortest path from vertéxo vertexj
for each of the? vertex pairgi,j).

Dijkstra’s Single Source Algorithm]

< Use Dijkstra’s algorithnm times, once with
each of then vertices as the source vertex.

Performance

» Time complexity iSO(n°) time.
« Works only when no edge has a cost

Dynamic Programming Solution

Time complexity isTheta(if) time.

Works so long as there is no cycle whose leng
is<0.

When there is a cycle whose lengtk:ig, some
shortest paths aren't finite.

= |f vertex1is on a cycle whose length-i8, each time
you go around this cycle once you gétta 1 path
that is2 units shorter than the previous one.

Simpler to code, smaller overheads.
Known as Floyd’s shortest paths algorithm.

Decision Sequence

« First decide the highest intermediate vertex (i.e.,
largest vertex number) on the shortest path from
to].

« If the shortest path is 2, 6, 3, 8, 5, 7, the first
decision is that verte& is an intermediate vertex
on the shortest path and no intermediate vertex is
larger thars.

* Then decide the highest intermediate vertex on the
path fromi to 8, and so on.

Problem State

« (i,},k) denotes the problem of finding the shorte
path from vertex to vertex that has no
intermediate vertex larger than

* (i,J,n) denotes the problem of finding the shorte
path from vertex to vertexj (with no restrictions
on intermediate vertices).

Cost Function

 Letc(i,j,k) be the length of a shortest path from
vertexi to vertexj that has no intermediate verte
larger thark.

X

c(i,j,n)
 c(i,j,n) is the length of a shortest path from
vertexi to vertexj that has no intermediate
vertex larger than.
* No vertex is larger than
» Thereforec(i,j,n) is the length of a shortest
path from vertex to vertex|.

c(i,},0)

 ¢(i,j,0) is the length of a shortest path from verit¢

to vertexj that has no intermediate vertex largef
thanO.

= Every vertex is larger thah

= Thereforec(i,j,0) is the length of a single-edge path
from vertexi to vertexj.

PX

Recurrence For c(i,j,k), k>0

« The shortest path from vertéxo vertexj that has
no intermediate vertex larger themay or may
not go through vertelx.

« If this shortest path does not go through vektex
the largest permissible intermediate vertelx-is
So the path length ix(i,},k-1).

<k
W\M\'\f?

Recurrence For c(i,j,k)), k>0

» Shortest path goes through verkex

W\M\‘\J‘O

i j

* We may assume that vertiexs not repeated
because no cycle has negative length.

* Largest permissible intermediate vertexi ¢mk
andk to j paths isk-1.

Recurrence For c(i,j,k)), k>0

« i to k path must be a shortesb k path that
goes through no vertex larger thad.

« If not, replace curreritto k path with a shorter
to k path to get an even shortdp | path.

Recurrence For c(i,j,k)), k>0

» Similarly, k to] path must be a shortésto |
path that goes through no vertex larger thdn

» Therefore, length afto k path isc(i,k,k-1), and
length ofk to | path isc(k,j,k-1).

* So,c(i,),k) = c(i,k,k-1) + c(k,j,k-1)

Recurrence For c(i,j,k)), k>0

» Combining the two equations fofi,j,k), we get

c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}

¢ We may compute the(i,j,k)s in the ordek = 1,

2,3,...,n

Floyd’'s Shortest Paths Algorithm

for (intk = 1; k <= n; k++)
for (inti=1;i<=n;it++)
for (intj=1;j<=n;j++)
c(i,j,k) = min{c(i,j,k-1),
c(i,k,k-1) + c(k,j,k-1)};

» Time complexity iSO(®).
» More preciselyTheta(id).
» Theta() space is needed fo(*,*,*) .

Space Reduction
* c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}
* When neither norj equalsk, c(i,j,k-1) is used
only in the computation af(i,j,k).
column k

(1J) T
row k

I

* Soc(i,j,k) can overwritec(i,j,k-1).

Space Reduction

c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,},k-1)}
* Wheni equalsk, c(i,j,k-1) equalsc(i,j,k).
= ¢(k,j,k) = min{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)}

= min{c(k,j,k-1), 0 + c(k,j,k-1)}

= c(k,j,k-1)
* So, when equalsk, c(i,j,k) can overwrite
c(i,j,k-1).
Similarly whenj equalsk, c(i,j,k) can overwrite
c(i,j,k-1).

* So, in all cases(i,j,k) can overwritec(i,j,k-1).

Floyd’'s Shortest Paths Algorithm

for (intk = 1; k <= n; k++)
for (inti=1;i<=n;it++)
for (intj=1;j<=n;j++)
¢(i,j) = min{c(i.j), c(i,k) + c(kj)};

« Initially, c(i,j) = c(i,j,0).

» Upon terminationg(i,j) = c(i,j,n).
 Time complexity isTheta(r).

* Theta(rd) space is needed fof*,*).

Building The Shortest Paths
» Letkay(i,j) be the largest vertex on the shorteg
path fromi to .

« Initially, kay(i,j) = O (shortest path has no
intermediate vertex).

for (intk = 1; k <= n; k++)
for (inti=1;i<=n;i++)
for(intj=1;j<=n;j++)
if (c(i,)) > c(i,k) + c(k,j))
{kay(i.j) = k; c(i,j) = c(i,k) + c(k,j);}

—F

Example

7 51 - -
- -4 R
e, Initial Cost Matrix
4 -1 c(*,*) = c(*,*,0)
----- 1

Final Cost Matrix c(*,*) = c(*,*,n)

0 6 5 1101314 11
10 015 8 4 7 8 5
12 7 013 9 9 10 10
15 520 0 912 13 10
911 4 03 4 1
98 4130
8 7 312 6
1110 6 15 2

a N w o

1 5
0 4
3 0

kay Matrix

04004885
80850885
70050065
80802885
84800880
77777007
04114800
77777060

Shortest Path

Shortest path frorto 7.
Path length id 4.

Build A Shortest Path

04004885
80850885
70050065
80802885
84800880
77777007
04114800
77777060

eThepathisl 425867

e kay(1,7) =8
1—>8—>7
e kay(1,8) =5
1 > 5 >3 >7
e kay(1,5)=4

1—> 4 —> 5—> g—=>7

Build A Shortest Path

04004885
80850885
70050065
80802885
84800880
77777007
04114800
77777060

eThepathisl 425867
1=> 4=> 5—> §—>7
e kay(1,4) =0

14— 5—=>g—=>7

e kay(4,5) =2

14— 2—> 5> g—>7
e kay(4,2) =0

14 2=> 5= 8=>7

Build A Shortest Path

04004885 «Thepathis 425867
80850885 14 2> 5—> g—>7
70050065 <kay(2,5)=0
80802885 14 25— g=>7
84800880 <+kay(58)=0
77777007 14258—>7
04114800 “KW@B7)=6
77777060 142587677

Build A Shortest Path

04004885
80850885
70050065
80802885
84800880
77777007
04114800
77777060

eThepathisl 425867
14 258—>6—>7

* kay(8,6) =0
142586—=>7

* kay(6,7) =0
1425867

Output A Shortest Path

public static voicbutputPathiqit i, int j)
{/l does not output first vertex (i) on path
if (i==]) return
if (kay[i][j] ==0) // no intermediate vertices on path
System.out.print(j + " ");
else{// kay[i][j] is an intermediate vertex on the path
outputPath(i, kay[i][j]);
outputPath(kay[il[i], j);
}

Time Complexity Of outputPa

O(number of vertices on shortest path)

