a All-Pairs Shortest Paths

« Given ann-vertex directed weighted graph,
find a shortest path from vertexo vertex;
for each of then? vertex pairgi,)).

Dijkstra’s Single Source Algorithm

e Use Dijkstra’s algorithnm times, once with
each of then vertices as the source vertex.

Performance

e Time complexity iO(°) time.
» Works only when no edge has a cosi

Dynamic Programming Solution

Time complexity isTheta(id) time.

Works so long as there is no cycle whose leng
is< 0.

When there is a cycle whose lengthk:ig, some
shortest paths aren't finite.

= |f vertex1is on a cycle whose length-i&, each time
you go around this cycle once you gétta 1 path
that is2 units shorter than the previous one.

Simpler to code, smaller overheads.
Known as Floyd’s shortest paths algorithm.

h

Decision Sequence

» First decide the highest intermediate vertex (i.e.,
largest vertex number) on the shortest path from
to].

* If the shortest path is 2, 6, 3, 8, 5, 7, the first
decision is that verteX is an intermediate vertex
on the shortest path and no intermediate vertex is
larger tharB.

* Then decide the highest intermediate vertex on the
path fromi to 8, and so on.

Problem State

* (i,],k) denotes the problem of finding the shorte:
path from vertex to vertexj that has no
intermediate vertex larger than

* (i,J,n) denotes the problem of finding the shorte:
path from vertex to vertex] (with no restrictions
on intermediate vertices).

*2J

UJ

Cost Function

o Letc(i,},k) be the length of a shortest path from
vertexi to vertex] that has no intermediate vertex
larger thark.

c(i,j,n)
 c(i,},n) is the length of a shortest path from
vertexi to vertexj that has no intermediate
vertex larger than.

* No vertex is larger than.

» Thereforec(i,j,n) is the length of a shortest
path from vertex to vertex].

c(1,1,0)

 ¢(i,},0) is the length of a shortest path from veritgx
to vertexj that has no intermediate vertex larger
thanO.
= Every vertex is larger thahn

= Thereforec(i,},0) is the length of a single-edge path
from vertexi to vertex.

Recurrence For c(i,},k), k>0

» The shortest path from vertexo vertexj that has
no intermediate vertex larger theamay or may
not go through vertek.

o If this shortest path does not go through vekiex
the largest permissible intermediate vertex-is
So the path length i5(i,j,k-1).

<k
W\J\ﬂj\«}?

Recurrence For c(i,},k)), k>0

» Shortest path goes through verkex

M]—JSK’\J\J\M@

i J

 We may assume that vertexs not repeated
because no cycle has negative length.

» Largest permissible intermediate vertexi dmk
andk to] paths isk-1.

Recurrence For c(i,},k)), k>0

* i to k path must be a shortedb k path that
goes through no vertex larger thad.

* If not, replace currentto k path with a shorter
to k path to get an even shortdp | path.

Recurrence For c(i,},k)), k>0

Similarly, k to] path must be a shortésto |
path that goes through no vertex larger thdn

Therefore, length ofto k path isc(i,k,k-1), and
length ofk to | path isc(k,j,k-1).
So,c(i,},k) = c(i,k,k-1) + c(k,j,k-1)

Recurrence For c(i,},k)), k>0

Combining the two equations fofi,},k), we get
c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}
We may compute thg(i,j,k)s in the ordek = 1,
2,3,...,N

Floyd’s Shortest Paths Algorithm

for (intk = 1; k <= n; k++)
for (inti=1;1<=n;i++)
for (intj=1;) <=n; j++)
c(i,j,k) = min{c(i,j,k-1),
c(i,k,k-1) + c(k,j,k-1)};
e Time complexity iSO(r?).
» More preciselylheta(r).
« Theta(r) space is needed fof*,*,*) .

Space Reduction
e c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}
* When neither norj equalsk, c(i,j,k-1) is used

only in the computation af(i,},k).
column k

(i) T
row k

» Soc(i,},k) can overwrite(i,],k-1).

Space Reduction

c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}
Wheni equalsk, c(i,j,k-1) equalsc(,j,k).
» c(k,j,k) = min{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)}

= min{c(k,j,k-1), 0 + c(k,j,k-1)}

= c(k,j,k-1)
So, when equalsk, c(i,},k) can overwrite
c(i,j,k-1).
Similarly whenj equalsk, c(i,},k) can overwrite
c(i,j,k-1).
So, in all cases(i,},k) can overwritec(i,j,k-1).

Floyd’s Shortest Paths Algorithm

for (intk = 1; k <= n; k++)
for (inti=1;1<=n;i++)
for (intj=1;) <=n; j++)
c(i,)) = min{c(i,j), c(i,k) + c(k,)};

e Initially, c(i,j) = c(i,},0).
» Upon terminationg(i,)) = c(i,},n).
» Time complexity isTheta(rd).

 Theta(r?) space is needed fo(*,*).

Building The Shortest Paths

» Letkay(i,) be the largest vertex on the shortes
path fromi to .

* Initially, kay(i,j)) = O(shortest path has no
intermediate vertex).

for (intk = 1; k <= n; k++)
for (inti=1;1<=n; i++)
for (intj=1;j <= n;j++)
if (c(i,j) > c(i,k) + c(k,j))
{kay(i,)) = k; c(i,j) = c(i,k) + c(k,));}

Example

7 51 -
- - 4
; . 9 _916) Initial Cost Matrix
a1 () =c(R0)
_____ -1 -
2 - - - - - - 4

Final Cost Matrix c(*,*) = c(*,*,n)

O 6 5 110 13 14 11
10 015 8 4 7 8 5
12 7 013 9 9 10 10
15 520 0 912 13 10
6 911 4 0 3 4 1
398 413 0 1 5
2 87 312 6 0 4
51110 615 2 3 O

kay Matrix

04004885
80850885
70050065
80802885
84800880
(7777007
04114800
(7777060

Shortest Path

Shortest path frort to 7.
Path length i4.4.

Build A Shortest Path

04004885 » The path isL 42586 7
80850885 ckay(1,7) = 8
70050065 >
80802885 Kay(L8) = 5
84800880 R
77777007 kay(L5) = 4
04114800

—] — [Q =
77777060 I=a= o= 8=

Build A Shortest Path

04004885
80850885
70050065
80802885
84800880
(7777007
04114800
(7777060

*Thepathist 425867
1=—> 4 => 5= 3—=>7

o kay(1,4) =0

14—> 5—> g—>7

e kay(4,5) =2
14=>2=—> 5—> 8—=>7
» kay(4,2) =0

14 2—> 5—> g8—>7

Build A Shortest Path

04004885
80850885
70050065
80802885
84800880
(7777007
04114800
(7777060

*The pathist 425867
14 2=> 5—> 8—>7

e kay(2,5) =0

14 25=—> 8—=>7
» kay(5,8) =0

14 258=>7
» kay(8,7) =6

14 258=>6=>7

Build A Shortest Path

04004885 « The pathisl 42586 7
80850885 14 258> 6=>7
70050065

» kay(8,6) =0
80802885
84800880 L4 258677
77777007 "kay(6,7) =0

1425867

04114800
77777060

Output A Shortest Path

public static voidbutputPatht i, int)
{/I does not output first vertex (i) on path
if (i ==]) return
if (kay[i][j] == 0) // no intermediate vertices on path
System.out.print(j + " ");
else{// kay[i][j] is an intermediate vertex on the path
outputPath(i, kay[i][j]);
outputPath(kay[i][jl, D;
}

Time Complexity Of outputPat

O(number of vertices on shortest path)

