
All-Pairs Shortest Paths

• Given an n-vertex directed weighted graph,
find a shortest path from vertex i to vertex j
for each of the n2 vertex pairs (i,j).

1

2

3

4

5

6

7

5

7
1

7

9

1
9

4
4

5 16

4

2

8

12

Dijkstra’s Single Source Algorithm

• Use Dijkstra’s algorithm n times, once with
each of the n vertices as the source vertex.

1

2

3

4

5

6

7

5

7
1

7

9

1
9

4
4

5 16

4

2

8

12

Performance

• Time complexity is O(n3) time.

• Works only when no edge has a cost < 0.

Dynamic Programming Solution
• Time complexity is Theta(n3) time.

• Works so long as there is no cycle whose length
is < 0.

• When there is a cycle whose length is < 0, some
shortest paths aren’t finite.
� If vertex1 is on a cycle whose length is-2, each time

you go around this cycle once you get a 1 to 1 path
that is 2 units shorter than the previous one.

• Simpler to code, smaller overheads.

• Known as Floyd’s shortest paths algorithm.

Decision Sequence

• First decide the highest intermediate vertex (i.e.,
largest vertex number) on the shortest path from i
to j.

• If the shortest path is i, 2, 6, 3, 8, 5, 7, j the first
decision is that vertex 8 is an intermediate vertex
on the shortest path and no intermediate vertex is
larger than 8.

• Then decide the highest intermediate vertex on the
path from i to 8, and so on.

i j

Problem State

• (i,j,k) denotes the problem of finding the shortest
path from vertex i to vertex j that has no
intermediate vertex larger than k.

• (i,j,n) denotes the problem of finding the shortest
path from vertex i to vertex j (with no restrictions
on intermediate vertices).

i j

Cost Function

• Let c(i,j,k) be the length of a shortest path from
vertex i to vertex j that has no intermediate vertex
larger than k.

i j

c(i,j,n)
• c(i,j,n) is the length of a shortest path from

vertex i to vertex j that has no intermediate
vertex larger than n.

• No vertex is larger than n.
• Therefore,c(i,j,n) is the length of a shortest

path from vertex i to vertex j.

1

2

3

4

5

6

7

5

7
1

7

9

1
9

4
4

5 16

4

2

8

12

c(i,j,0)
• c(i,j,0) is the length of a shortest path from vertex i

to vertex j that has no intermediate vertex larger
than 0.
� Every vertex is larger than 0.

� Therefore,c(i,j,0) is the length of a single-edge path
from vertex i to vertex j.

1

2

3

4

5

6

7

5

7
1

7

9

1
9

4
4

5 16

4

2

8

12

Recurrence For c(i,j,k), k > 0

• The shortest path from vertex i to vertex j that has
no intermediate vertex larger than k may or may
not go through vertex k.

• If this shortest path does not go through vertexk,
the largest permissible intermediate vertex isk-1.
So the path length isc(i,j,k-1)..

i j

< k

Recurrence For c(i,j,k)), k > 0

• Shortest path goes through vertex k.

i j

k

• We may assume that vertex k is not repeated
because no cycle has negative length.

• Largest permissible intermediate vertex oni to k
and k to j paths is k-1.

Recurrence For c(i,j,k)), k > 0

i j

k

• i to k path must be a shortest i to k path that
goes through no vertex larger than k-1.

• If not, replace current i to k path with a shorter i
to k path to get an even shorter i to j path.

Recurrence For c(i,j,k)), k > 0

i j

k

• Similarly, k to j path must be a shortest k to j
path that goes through no vertex larger than k-1.

• Therefore, length of i to k path is c(i,k,k-1), and
length of k to j path is c(k,j,k-1).

• So, c(i,j,k) = c(i,k,k-1) + c(k,j,k-1).

Recurrence For c(i,j,k)), k > 0

• Combining the two equations for c(i,j,k), we get
c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}.

• We may compute the c(i,j,k)s in the order k = 1,
2, 3, …, n.

i j

Floyd’s Shortest Paths Algorithm

for (int k = 1; k <= n; k++)

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

c(i,j,k) = min{c(i,j,k-1),

c(i,k,k-1) + c(k,j,k-1)};

• Time complexity is O(n3).

• More precisely Theta(n3).

• Theta(n3) space is needed for c(*,*,*) .

Space Reduction
• c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}

• When neither i nor j equals k, c(i,j,k-1) is used
only in the computation of c(i,j,k).

column k

row k

(i,j)

• So c(i,j,k) can overwrite c(i,j,k-1).

Space Reduction

• c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}

• When i equals k, c(i,j,k-1) equals c(i,j,k).
� c(k,j,k) = min{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)}

= min{c(k,j,k-1), 0 + c(k,j,k-1)}

= c(k,j,k-1)

• So, when i equals k, c(i,j,k) can overwrite
c(i,j,k-1).

• Similarly when j equals k, c(i,j,k) can overwrite
c(i,j,k-1).

• So, in all casesc(i,j,k) can overwrite c(i,j,k-1).

Floyd’s Shortest Paths Algorithm

for (int k = 1; k <= n; k++)

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

c(i,j) = min{c(i,j), c(i,k) + c(k,j)};

• Initially, c(i,j) = c(i,j,0).

• Upon termination, c(i,j) = c(i,j,n).
• Time complexity is Theta(n3).

• Theta(n2) space is needed for c(*,*) .

Building The Shortest Paths
• Let kay(i,j) be the largest vertex on the shortest

path from i to j.

• Initially, kay(i,j) = 0 (shortest path has no
intermediate vertex).

for (int k = 1; k <= n; k++)

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

if (c(i,j) > c(i,k) + c(k,j))

{kay(i,j) = k; c(i,j) = c(i,k) + c(k,j);}

Example

- 7 5 1 - - - -

- - - - 4 - - -

- 7 - - 9 9 - -

- 5 - - - - 16 -

- - - 4 - - - 1

- - - - - - 1 -

2 - - - - - - 4

- - - - - 2 4 -

1

2

3

4

5

6

7

5

7
1

7

9

1
9

4
4

5 16

4

2

8

12

Initial Cost Matrix
c(*,*) = c(*,*,0)

Final Cost Matrix c(*,*) = c(*,*,n)

0 6 5 1 10 13 14 11

10 0 15 8 4 7 8 5

12 7 0 13 9 9 10 10

15 5 20 0 9 12 13 10

6 9 11 4 0 3 4 1

3 9 8 4 13 0 1 5

2 8 7 3 12 6 0 4

5 11 10 6 15 2 3 0

kay Matrix

0 4 0 0 4 8 8 5

8 0 8 5 0 8 8 5

7 0 0 5 0 0 6 5

8 0 8 0 2 8 8 5

8 4 8 0 0 8 8 0

7 7 7 7 7 0 0 7

0 4 1 1 4 8 0 0

7 7 7 7 7 0 6 0

Shortest Path

Shortest path from 1 to 7.

1

2

3

4

5

6

7

5

7
1

7

9

1
9

4
4

5 16

4

2

8

12

Path length is 14.

Build A Shortest Path

0 4 0 0 4 8 8 5

8 0 8 5 0 8 8 5

7 0 0 5 0 0 6 5

8 0 8 0 2 8 8 5

8 4 8 0 0 8 8 0

7 7 7 7 7 0 0 7

0 4 1 1 4 8 0 0

7 7 7 7 7 0 6 0

• The path is 1 4 2 5 8 6 7.

• kay(1,7) = 8

1 8 7

• kay(1,8) = 5
1 5 8 7

• kay(1,5) = 4

1 5 8 74

Build A Shortest Path

0 4 0 0 4 8 8 5

8 0 8 5 0 8 8 5

7 0 0 5 0 0 6 5

8 0 8 0 2 8 8 5

8 4 8 0 0 8 8 0

7 7 7 7 7 0 0 7

0 4 1 1 4 8 0 0

7 7 7 7 7 0 6 0

• The path is 1 4 2 5 8 6 7.

1 5 8 74

• kay(1,4) = 0

1 5 8 74

• kay(4,5) = 2
1 5 8 724

• kay(4,2) = 0
1 5 8 724

Build A Shortest Path

0 4 0 0 4 8 8 5

8 0 8 5 0 8 8 5

7 0 0 5 0 0 6 5

8 0 8 0 2 8 8 5

8 4 8 0 0 8 8 0

7 7 7 7 7 0 0 7

0 4 1 1 4 8 0 0

7 7 7 7 7 0 6 0

• The path is 1 4 2 5 8 6 7.
1 5 8 724

• kay(2,5) = 0
1 5 8 724

• kay(5,8) = 0
1 5 8 724

• kay(8,7) = 6
1 5 8 624 7

Build A Shortest Path

0 4 0 0 4 8 8 5

8 0 8 5 0 8 8 5

7 0 0 5 0 0 6 5

8 0 8 0 2 8 8 5

8 4 8 0 0 8 8 0

7 7 7 7 7 0 0 7

0 4 1 1 4 8 0 0

7 7 7 7 7 0 6 0

• The path is 1 4 2 5 8 6 7.

1 5 8 624 7

• kay(8,6) = 0
1 5 8 624 7

• kay(6,7) = 0
1 5 8 624 7

Output A Shortest Path

public static voidoutputPath(int i, int j)

{ // does not output first vertex (i) on path

if (i == j) return;

if (kay[i][j] == 0) // no intermediate vertices on path

System.out.print(j + " ");

else{ // kay[i][j] is an intermediate vertex on the path

outputPath(i, kay[i][j]);

outputPath(kay[i][j], j);

}

}

Time Complexity Of outputPath

O(number of vertices on shortest path)

