Matrix Multiplication Chains

- Determine the best way to compute the matrix product M₁x M₂ x M₃ x ... x M_q.
- Let the dimensions of M_i be $r_i \times r_{i+1}$.
- q-1 matrix multiplications are to be done.
- Decide the matrices involved in each of these multiplications.

Decision Sequence

- $M_1 \times M_2 \times M_3 \times ... \times M_q$
- Determine the q-1 matrix products in reverse order.
 - What is the last multiplication?
 - What is the next to last multiplication?
 - And so on.

Problem State

- $M_1 \times M_2 \times M_3 \times ... \times M_0$
- The matrices involved in each multiplication are a contiguous subset of the given q matrices.
- The problem state is given by a set of pairs of the form (i, j), i <= j.
 - The pair (i,j) denotes a problem in which the matrix product M_ix M_{i+1} x ... x M_i is to be computed.
 - The initial state is (1,q).
 - \blacksquare If the last matrix product is $(M_1x\ M_2\ x\ ...\ x\ M_k)\ x\ (M_{k+1}x\ M_{k+2}\ x\ ...\ x\ M_q)$, the state becomes $\{(1,k),(k+1,q)\}$

Verify Principle Of Optimality

- Let $M_{ii} = M_i \times M_{i+1} \times ... \times M_i$, i <= j.
- Suppose that the last multiplication in the best way to compute M_{ij}is M_{ik}x M_{k+1,j} for some k, i <= k < j.
- Irrespective of what k is, a best computation of M_{ij}in which the last product is M_{ik}x M_{k+1,j} has the property that M_{ik} and M_{k+1,j} are computed in the best possible way.
- So the principle of optimality holds and dynamic programming may be applied.

Recurrence Equations

- Let c(i,j) be the cost of an optimal (best) way to compute M_{ii} , $i \le j$.
- c(1,q) is the cost of the best way to multiply the given q matrices.
- Let kay(i,j) = k be such that the last product in the optimal computation of M_{ii} is $M_{ik} \times M_{k+1,i}$.
- c(i,i) = 0, 1 <= i <= q. $(M_{ii} = M_{i})$
- $c(i,i+1) = r_i r_{i+1} r_{i+2}$, $1 \le i < q$. $(M_{ii+1} = M_i x M_{i+1})$
- kay(i,i+1) = i.

c(i, i+s), 1 < s < q

- The last multiplication in the best way to compute $M_{i,i+s}$ is $M_{ik} \times M_{k+1,i+s}$ for some k, i <= k <i+s.
- If we knew k, we could claim:

```
c(i,i+s) = c(i,k) + c(k+1,i+s) + r_i r_{k+1} r_{i+s+1}
```

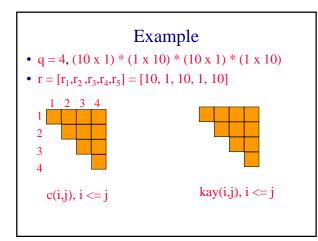
- Since $i \le k \le i+s$, we can claim $c(i,i+s) = min\{c(i,k) + c(k+1,i+s) + r_i r_{k+1} r_{i+s+1}\}, \text{ where }$ the min is taken over $i \le k < i+s$.
- kay(i,i+s) is the k that yields above min.

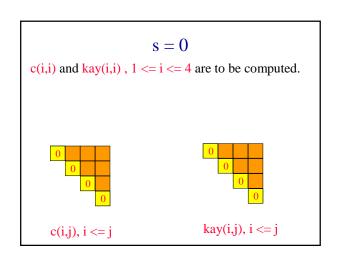
Recurrence Equations

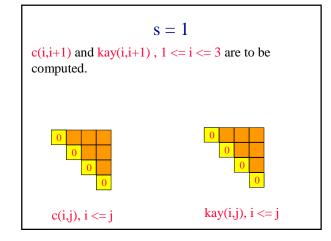
- c(i,i+s) =
 - $min_{i <= k < i+s} \{c(i,k) + c(k+1,i+s) + r_i r_{k+1} r_{i+s+1} \}$
- c(*,*) terms on right side involve fewer matrices than does the c(*,*) term on the left side.
- So compute in the order s = 2, 3, ..., q-1.

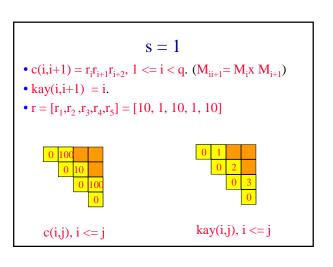
A Recursive Implementation

- See text for recursive codes.
- Code that does not avoid recomputation of already computed c(i,j)s runs in Omega(2q)
- · Code that does not recompute already computed c(i,j)s runs in $O(q^3)$ time.
- Implement nonrecursively for best worst-case efficiency.

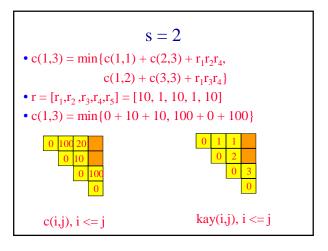


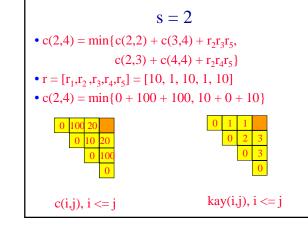


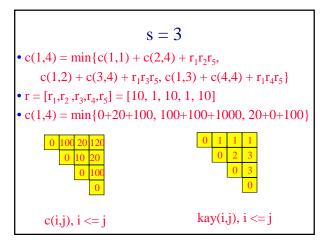




$$\begin{split} s &= 2 \\ \bullet c(i,i+2) &= \min\{c(i,i) + c(i+1,i+2) + r_i r_{i+1} r_{i+3}, \\ &\quad c(i,i+1) + c(i+2,i+2) + r_i r_{i+2} r_{i+3}\} \\ \bullet r &= [r_1,r_2,r_3,r_4,r_5] = [10, 1, 10, 1, 10] \\ \hline \\ 0 & 100 \\ \hline 0 & 10$$







Determine The Best Way To Compute M₁₄

- kay(1,4) = 1.
- So the last multiplication is $M_{14} = M_{11} \times M_{24}$.
- M₁₁ involves a single matrix and no multiply.
- Find best way to compute M₂₄.

$$c(i,j)$$
, $i \le j$

$$kay(i,j), i \le j$$

Determine The Best Way To Compute M₂₄

- kay(2,4) = 3.
- So the last multiplication is $M_{24} = M_{23} \times M_{44}$.
- $\mathbf{M}_{23} = \mathbf{M}_{22} \times \mathbf{M}_{33}$.
- M₄₄ involves a single matrix and no multiply.

$$c(i,j), i \le j$$

$$kay(i,j), i \le j$$

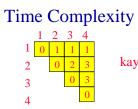
The Best Way To Compute M₁₄

- The multiplications (in reverse order) are:
 - $M_{14} = M_{11} \times M_{24}$
 - $M_{24} = M_{23} \times M_{44}$
 - $M_{23} = M_{22} \times M_{33}$

Time Complexity

$$c(i,j), i \le j$$

- O(q²) c(i,j) values are to be computed, where q is the number of matrices.
- $c(i,i+s) = min_{i \le k \le i+s} \{c(i,k) + c(k+1,i+s) + r_i r_{k+1} r_{i+s+1} \}.$
- Each c(i,j) is the min of O(q) terms.
- Each of these terms is computed in O(1) time.
- So all c(i,j) are computed in $O(q^3)$ time.



$$kay(i,j), i \le j$$

- The traceback takes O(1) time to determine each matrix product that is to be done.
- q-1 products are to be done.
- Traceback time is O(q).