& - Dynamic Programming
el

®

Sequence of decisions.
Problem state.
Principle of optimality.

« Dynamic Programming Recurrence
Equations.

Solution of recurrence equations.

0/1 Knapsack Problem |]

Letx;= 1when itemi is selected and let= 0
when itemi is not selected.

X

n
maximize_2l P
| =

n
subject '(0_2l W; X;<=¢C
| =

andx;=Oor 1foralli
All profits and weights are positive.

Problem State

* The state of the 0/1 knapsack problem is given
= the weights and profits of the available items
= the capacity of the knapsack
* When a decision on one of thevalues is made,
the problem state changes.
= jtemi is no longer available
= the remaining knapsack capacity may be less

Sequence Of Decisions

 As in the greedy method, the solution to a
problem is viewed as the result of a
sequence of decisions.

« Unlike the greedy method, decisions are not
made in a greedy and binding manner.

Sequence Of Decision3

Decide thex; values in the order;, X, X5, ..., X,
Decide thex; values in the order,, X3, Xp.0 --+»

Xy

Decide thex; values in the ordex;, X, X5, X;,.q, -
Or any other order.

Problem State

« Suppose that decisions are made in the order, X,
ooy Xppe
¢ The initial state of the problem is described by the pai
L c)
= ltems1 throughn are available (the weights, profits amére
implicit).
= The available knapsack capacityis
« Following the first decision the state becomes one of {
following:
= (2, ¢)... when the decision is to set= 0.
= (2, c-wy) ... when the decision is to set= 1.

he

Problem State

* Suppose that decisions are made in the otgex, ;, X,,.»,
ey Xqe
¢ The initial state of the problem is described by the pai
(n, ¢}
= ltems1 throughn are available (the weights, profits and first
item index are implicit).
= The available knapsack capacityis
¢ Following the first decision the state becomes one of the
following:
= (n-1, c)... when the decision is to sef= 0.
= (n-1, c-w,) ... when the decision is to set= 1.

0/1 Knapsack Problem |]

» Suppose that decisions are made in the orger
Xy Xgy +eey X

* Letx,=a, X,= &, X3= &, ..., X,= &, be an
optimal solution.

* If a, = 0, then following the first decision the sta
is (2, c)

* a, &, ..., a,must be an optimal solution to the
knapsack instance given by the si@e).

@

X1=ai=0 E-I

* X;= &, X,= by, X3= by, ..., X, = b, is a better
solution to the original instance tharxis
A, Xo= 8 X3= 8, -y X = e

* SOX;= &, X, = &, Xg= &, ..., X, = & cannot
be an optimal solution ... a contradiction
with the assumption that it is optimal.

Principle Of Optimality

» An optimal solution satisfies the following
property:
= No matter what the first decision, the remaining
decisions are optimal with respect to the state that
results from this decision.
« Dynamic programming may be used only wherj

the principle of optimality holdsa

X;=a=0 B

n
maximize_22 P X
i=

n
subject '(0_22 W; Xj<=C
| =
andx;= Oor 1foralli

« If not, this instance has a better solutignb,,
.., by

n n
S pb >2 Ra
i=2 =2

X1=ai=l E-I

» Next, consider the case= 1. Following the
first decision the state (g, c-w).

> a, &, ..., 8, must be an optimal solution to
the knapsack instance given by the sfate
-w,).

X;=g=1 E

n
maximize_i2 Pi X;
| =

n
subject to_22 W; X <= C- Wy
| =
andx;= Oor 1foralli

* If not, this instance has a better solutignb,,
vy b

n n
S pb >2 P&
i=2 i=2

0/1 Knapsack Problem]

» Therefore, no matter what the first decision, thq
remaining decisions are optimal with respect tg
the state that results from this decision.

» Theprinciple of optimalityholds and dynamic
programming may be applied.

Dynamic Programming Recurrence

« f(n,y) is the value of the optimal solution to the
knapsack instance defined by the statg).
= Only itemn is available.
= Available capacity iy.

o If w, <=y, f(ny) =p,

o Ifw,>y,f(ny) =0

I
* X;= &, X,= by, X3= by, ..., X, = b, is a better
solution to the original instance tharxis &, X,=
8y X3= 8y s Xy = Gy
* SOX,= &, X, = &, X3= &, ..., X,= g, cannot be an
optimal solution ... a contradiction with the
assumption that it is optimal.

Dynamic Programming Recurrence

¢ Letf(i,y) be the profit value of the optimal solution to
the knapsack instance defined by the dfate
= ltemsi throughn are available.
= Available capacity ig.
¢ For the time being assume that we wish to determine
only the value of the best solution.
= Later we will worry about determining thes that yield this
maximum value.

« Under this assumption, our task is to determje).

Dynamic Programming Recurrence

» Suppose that< n.

« f(i,y) is the value of the optimal solution to the
knapsack instance defined by the statg.
= ltemsi throughn are available.
= Available capacity iy.

» Suppose that in the optimal solution for the stg
(i,y), the first decision is to set= 0.

» From the principle of optimality (we have
shown that this principle holds for the knapsad
problem), it follows thatf(i,y) = f(i+1,y).

te

~

Dynamic Programming Recurrence

» The only other possibility for the first decision
isx=1

» The case;= 1can arise only whep >= w;.

» From the principle of optimality, it follows that
f(i,y) = f(i+1,y-w,) + p.

» Combining the two cases, we get
= f(i,y) = f(i+1,y) whenevery < w;.
= f(i,y) = max{f(i+1.y), f(i+1.y-w) + p},y >= w..

Recursion Tree

f(1,c)

}c)\ f(2,c-w,)
f(3c) f(3,c-w,) f(3,c-W,) f(3,c-W; —W,)
/N /' \ N

f(4,c) f(4,c-wy) f(4,c-W,) f(4,c-w, —Ws)

f(/)\ /N /N NN\ /N I\
5,c
f(5,c-wy —W;—w,)

@ Reducing Run Time

f(1,c)

}c)\ f(2,c-wy)
f(3c) f(3,c-w,) f(3,c-w,) f(3,c-w; —W,)
/N /N AN

f(4,c) f(4,c-wy) f(4,c-W,) f(4,c-w, —ws)

f(/)\ /N /N /NN/\ /N I\
5,
f(5,c-wy —w;—w,)

Recursive Code

[** @return f(i,y) */
private static inf(inti, inty)

{
if (i ==n)return(y <w[n]) ? 0 : p[n];
if (y <wil[i]) returnf(i + 1, y);
returnMath.max(f(i + 1, y),
f(i + 1,y - wii]) + p[i]);
}

Time Complexity
e Lett(n) be the time required whenitems are
available.
e t(0) = t(1) = awhereais a constant.
« Whent > 1,
t(n) <=2t(n-1) + b
whereb is a constant.
* t(n) = O(2).

Solving dynamic programming recurrencesA
recursively can be hazardous to run time.

Time Complexity

Leveli of the recursion tree has upZd nodes.

» At each such node 4dfi,y) is computed.

» Several nodes may compute the séfing).

< We can save time by not recomputing already
computed(i,y)s.

e Save computedli,y)s in a dictionary.

= Key is(i, y) value.

= (i, y) is computed recursively only whéry) is not in
the dictionary.

= Otherwise, the dictionary value is used.

Integer Weights

« Assume that each weight is an integer.

* The knapsack capacitymay also be assumed
to be an integer.

Onlyf(i,y)swithl <=i<=nand0<=y<=c

are of interest.

Even though level of the recursion tree has up
to 2! nodes, at most+1represent different
f(i,y)s.

Integer Weights Dictionary

Use an arrajArray[][] as the dictionary.
fArray[1:n][0:c]
fArray[i][y] = -1 iff f(i,y) not yet computed.

This initialization is done before the recursive metho
is invoked.

¢ The initialization take®(cn)time.

No Recomputation Code .

private static inf(inti, inty)
{
if (fArray[i][y] >= 0) returnfArray[i][y];
if (i ==n) {fArray[i]ly] = (y <wn]) ? 0 : p[n];
returnfArrayf[i][y];}
if (y <wl[i]) fArray[illy] =f(i + 1, y);
elsefArray[i][y] = Math.max(f(i + 1, y),
f(i + 1, y - wli]) + pfi);
returnfArray[i][yl;

Time Complexity
t(n) = O(cn)
Analysis done in text.
Good whercnis smallrelative to2".
n=3c¢c=1010101
w = [100102 1000321 6327]
p =[102 505, 5]
2n=8
cn = 3030303

