fﬁ - Dynamic Programming Sequence Of Decisions
Zg ®

Sequence of decisions. < As in the greedy method, the solution to a
Problem state. problem is viewed as the result of a
sequence of decisions.

« Unlike the greedy method, decisions are not
made in a greedy and binding manner.

Principle of optimality.

e Dynamic Programming Recurrence
Equations.

Solution of recurrence equations.

0/1 Knapsack Problem |] Sequence Of Decision3

Letx;= 1when itemi is selected and let= 0
when itemi is not selected.

Decide thex, values in the order;, X,, X3, .., X
Decide thex values in the ordex,, X, 1, X, --+»

L n' *n-1r “*n-21
maximizeg1 P X X,.
- * Decide the; values in the ordery, X, X5, X4, -
n
subjectto2— WiX<=C « Or any other order.
=1

andx; = Oor 1for all i
All profits and weights are positive.

Problem State

e The state of the 0/1 knapsack problem is given
= the weights and profits of the available items
= the capacity of the knapsack

* When a decision on one of theralues is made,
the problem state changes.
= itemi is no longer available
= the remaining knapsack capacity may be less

Problem State

» Suppose that decisions are made in the otgex,, X5,
ey X

* The initial state of the problem is described by prair
(1, c)
= [tems1 throughn are available (the weights, profits amdre

implicit).

= The available knapsack capacityis

« Following the first decision the state becomes afrthe
following:
= (2, c)... when the decision is to set= 0.
= (2, c-w,) ... when the decision is to set= 1.

Problem State

» Suppose that decisions are made in the otgex, ;, X5,
ey Xq

« The initial state of the problem is described by prir
(n, c)
= |[tems1 throughn are available (the weights, profits and first

item index are implicit).

= The available knapsack capacityis

« Following the first decision the state becomes afrthe
following:
= (n-1, c)... when the decision is to sef= 0.
= (n-1, c-w,) ... when the decision is to sef= 1.

Principle Of Optimality

< An optimal solution satisfies the following
property:
= No matter what the first decision, the remaining
decisions are optimal with respect to the state tha
results from this decision.
» Dynamic programming may be used only wher

the principle of optimality holdsa

0/1 Knapsack Problem | .|

Suppose that decisions are made in the otgder
Koy Xgy +evy Xpy

Letx,= &, X, = &, X3= &, ..., X,= g, be an
optimal solution.

If 3, = 0, then following the first decision the state
is (2, c)

&, &, ..., 8, must be an optimal solution to the
knapsack instance given by the s{&e).

X;=a=0 E

n
maximize.Z2 Pi Xi

i=
n —_—
subject toii_2 Wi Xj<=¢C

andx; = Oor1for all i

+ If not, this instance has a better solutipnb,,
.y b

n n
S pb >2 Pba
i=2 =2

x1:81:0 E

* X;=a,X,= Db, X3= Db, ..., X,= b, is a better
solution to the original instance tharxis
A, Xy, = &, Xg= &g, .ony Xy = Gy

* SOX;= 8, X, = &, X3= &, ..., X, = §, cannot
be an optimal solution ... a contradiction
with the assumption that it is optimal.

X1:81:1 E

» Next, consider the case= 1. Following the
first decision the state (g, c-w).

* &, &, ..., 8,Must be an optimal solution to
the knapsack instance given by the state
-w,).

X;=a=1 E

n
maximize_z2 Pi Xi

| =
n —_—
subject to_i2 W; X <= C- W,
| =
andx; = Oor1for all i

« If not, this instance has a better solutipnb,,
. b

n n
S pb >2 Pba
i=2 =2

wEasl oo
* X=a, X,= b, X3= Db, ..., X,= b, is a better
solution to the original instance tharxis a;, x, =
B, X3= &, ooy Xy = &y
* SOX,= &, X, = &, X3= &, ..., X, = g, cannot be an
optimal solution ... a contradiction with the
assumption that it is optimal.

0/1 Knapsack Problem -

* Therefore, no matter what the first decision, the
remaining decisions are optimal with respect to
the state that results from this decision.

e Theprinciple of optimalityholds and dynamic
programming may be applied.

Dynamic Programming Recurrence

e Letf(i,y) be the profit value of the optimal solution to
the knapsack instance defined by the iatg
= |temsi throughn are available.
= Available capacity iy.
¢ For the time being assume that we wish to determine
only the value of the best solution.

= Later we will worry about determining thes that yield this
maximum value.

¢ Under this assumption, our task is to deternifjhe).

14

Dynamic Programming Recurrence

« f(n,y) is the value of the optimal solution to the
knapsack instance defined by the statg).
= Only itemn s available.
= Available capacity iy.

* Ifw, <=y, f(ny) =p.

o If w,>y, f(ny) =0

Dynamic Programming Recurrence

e Suppose that< n.

« f(i,y) is the value of the optimal solution to the
knapsack instance defined by the statg.
= |[temsi throughn are available.
= Available capacity iy.

» Suppose that in the optimal solution for the st3
(i,y), the first decision is to set= 0.

» From the principle of optimality (we have
shown that this principle holds for the knapsag
problem), it follows that(i,y) = f(i+1,y).

=

14

Dynamic Programming Recurrence

» The only other possibility for the first decision
isx=1
» The case;= 1 can arise only when >=w.
From the principle of optimality, it follows that
f(.y) = f(i+1.y-w) + p.
» Combining the two cases, we get
= f(i,y) = f(i+1,y) whenevery < w;.
= f(i,y) = max{f(i+1,y), fi+1,y-w)) + p}, y >=w,.

Recursive Code

/** @return f(i,y) */
private static inf(int i, inty)
{
if (i==n)return(y <w[n]) ? 0: p[n];
if (y <wl[i]) returnf(i + 1, y);
returnMath.max(f(i + 1, y),
f(i + 1,y - wli]) + pi]);

Recursion Tree

f(2,C), f(2,c-w;)

f(3 C) f(3,c-w,) f(3,c-w1) f(3,c-W; W)

VA /N
f(4, c) f(4cvxg) f(4,c f(4cw1—w3
/\ /\ /\ /\/\/\ /N 7N\

f(5,c-w, W —w,)

Time Complexity
Lett(n) be the time required whenitems are
available.
t(0) = t(1) = awhereais a constant.
Whent > 1,
t(n) <=2t(n-1) + b
whereb is a constant.
t(n) = O(2).

Solving dynamic programming recurrencesAl

recursively can be hazardous to run time.

(%4 Reducing Run Time

f(2,C), f(2,c-w;)
f(3 C) f(3,c-w,) f(3,c-W,) f(3,c-W; W)
LN N N
f(4, c) f(4,c- vxg) f(4,c- f(4 C-W,; —W,)
/N /N /\ NN\ N IN

f(5,c)

f(5,c-w, —w;—w,)

Time Complexity

Leveli of the recursion tree has upad nodes.
At each such node 4dfi,y) is computed.
Several nodes may compute the séfng) .
We can save time by not recomputing already
computed(i,y)s.

Save computef]i,y)s in a dictionary.

= Key is(i, y) value.

= (i, y) is computed recursively only whéry) is not in

the dictionary.
= Otherwise, the dictionary value is used.

Integer Weights

Assume that each weight is an integer.

The knapsack capacitymay also be assumed
to be an integer.

Onlyf(i,y)s withl <=i<=nand0 <=y <=c

are of interest.

Even though levelof the recursion tree has up
to 21 nodes, at most+1represent different
f(i,y)s.

Integer Weights Dictionary

Use an arrayArray([][] as the dictionary.
fArray[1:n][0:c]
fArray[i][y] = -1 iff f(i,y) not yet computed.

This initialization is done before the recursivetiosl
is invoked.

¢ The initialization take$®(cn)time.

No Recomputation Code .

private static inf(int i, inty)

{

if (fArray[i][y] >= 0) returnfArray][i][y];
if (i == n) {fArray[i][y] = (y <w[n]) ? 0 : p[n];
returnfArray[i][y];}
if (y <wl[i]) fArray[il[y] =f(i + 1, y);
elsefArray[i][y] = Math.max(f(i + 1, y),
f(i+ 1,y - wli]) + p[i]);
returnfArray[i][y];

Time Complexity

t(n) = O(cn)
* Analysis done in text.
¢ Good whercnis smallrelative to2".
* n=3¢c=1010101

w = [100102 1000321 6327]

p = [102 505 5]
e 2"=8
e cn =3030303

