. Dynamic Programming
@ ®

« Sequence of decisions.
* Problem state.
* Principle of optimality.

* Dynamic Programming Recurrence
Equations.

 Solution of recurrence equations.

Sequence Of Decisions

« As in the greedy method, the solution to a
problem is viewed as the result of a
sequence of decisions.

* Unlike the greedy method, decisions are not
made in a greedy and binding manner.




0/1 Knapsack Problem

Let x;= 1when itemi is selected and let=0
when itemi is not selected.

n
maximize 2— Pi %i

n
subjectto2— WiX<=C
| =

andx;= Oor 1 for all i

All profits and weights are positive.

Sequence Of Decisions

Decide thex; values in the order, X,, X3, ..., X,
Decide thex values in the ordet,, X, 1, X, 5 ---,
Xy

Decide thex values in the order,, X, X5, X1, ---
Or any other order.




Problem State

* The state of the 0/1 knapsack problem is given
* the weights and profits of the available items
* the capacity of the knapsack
* When a decision on one of thesalues is made,
the problem state changes.
= itemi is no longer available
* the remaining knapsack capacity may be less

py

Problem State

« Suppose that decisions are made in the ordes, X,

ooy X

* The initial state of the problem is described by plair
(1, c)
= [tems1 throughn are available (the weights, profits amdre
implicit).
= The available knapsack capacityis
* Following the first decision the state becomes airthe
following:
= (2, c)... when the decision is to set= 0.
= (2, c-w;) ... when the decision is to set= 1.




Problem State

* Suppose that decisions are made in the ordex, ;, X,
coes Xq

* The initial state of the problem is described gy plair
(n, c)

= [tems1 throughn are available (the weights, profits and first
item index are implicit).

= The available knapsack capacitycis
* Following the first decision the state becomes airthe
following:
= (n-1, c)... when the decision is to sef= 0.
= (n-1, c-w,) ... when the decision is to sef= 1.

Principle Of Optimality

* An optimal solution satisfies the following
property:
= No matter what the first decision, the remaining
decisions are optimal with respect to the state tha
results from this decision.
» Dynamic programming may be used only when

the principle of optimality holdsa




0/1 Knapsack Problem | .|

Suppose that decisions are made in the otder

Xoy Xy «ns Xpy

Letx,= &, X, = &, X3= &, ..., X,= & be an
optimal solution.

If &, = 0, then following the first decision the state
IS (2, c).

&, &, ..., 8, must be an optimal solution to the
knapsack instance given by the si@te).

X;=a=0
n
maximize 2— Pi %i

n
subjectto2— WiX<=C

andx;= Oor 1 for all |

« If not, this instance has a better solutimnb,,
N o

n n
S phb >2 P&
i=2 =2




X;=a=0

 X,=a, X, = Db, x3=Dh;, ...,x,= b, is a better
solution to the original instance tharxis
Ay, Xo= &y, X3 = gy ..y X = &

* SOX;= &, X, = &, X3= &, ..., X, = g, cannot
be an optimal solution ... a contradiction
with the assumption that it is optimal.

X;=aq=1

* Next, consider the case= 1. Following the
first decision the state (g, c-w).

* &, &, ..., a,must be an optimal solution to
the knapsack instance given by the sfate

-Wy).




X;=aq=1

X

n
maximize_z2 Y
| j—
n —
subject to2— Wi X <=C-W

andx;= Oor 1 for all |

« If not, this instance has a better solutimnb,,
N o

n n
S pb > 2 P&
i=2 =2

X;=aq=1
 X;=a, X, = b, x;= Dby, ...,x,= b, is a better
solution to the original instance tharxis- a,, x, =
&, X3= 8, ..., X, = &,
* SOX,;= &, X, = &, X3= &, ..., X,= &, cannot be an
optimal solution ... a contradiction with the
assumption that it is optimal.

ey




0/1 Knapsack Problem

ey

» Therefore, no matter what the first decision, the
remaining decisions are optimal with respect to
the state that results from this decision.

* Theprinciple of optimalityholds and dynamic
programming may be applied.

Dynamic Programming Recurrence

» Letf(i,y) be the profit value of the optimal solution to
the knapsack instance defined by the state
= [temsi throughn are available.
= Available capacity ig.
* For the time being assume that we wish to determine
only the value of the best solution.

= Later we will worry about determining thes that yield this
maximum value.

» Under this assumption, our task is to determihes).




Dynamic Programming Recurrence

 f(n,y) is the value of the optimal solution to the
knapsack instance defined by the sfatg).

= Only itemn is available.
* Available capacity iy.

o If w, <=y, f(ny) =np,

o If w,>vy, f(ny)=0.

Dynamic Programming Recurrence

e Suppose that< n.

 f(i,y) is the value of the optimal solution to the
knapsack instance defined by the sfatg.
* [temsi throughn are available.
* Available capacity iy.

» Suppose that in the optimal solution for the stgte
(i,y), the first decision is to set= 0.

* From the principle of optimality (we have

shown that this principle holds for the knapsack
problem), it follows that(i,y) = f(i+1,y).




Dynamic Programming Recurrence

The only other possibility for the first decision
is x;= 1,

The case;= 1 can arise only when >= w,.
From the principle of optimality, it follows that
f(i.y) = f(i+1.y-w)) + p.

Combining the two cases, we get

= f(i,y) = f(i+1,y) whenevery < w;.

= f(y) = max{f(i+1,y), f(i+1,y-w) + p}, y >= w.

Recursive Code

[** @return f(i,y) */
private static inf(inti, inty)
{
if (i==n)return(y <w[n]) ? 0 : p[n];
if (y <wli]) returnf(i + 1, y);
returnMath.max(f(i + 1, y),
f(i+ 1, y - wii]) + p[i]);




Recursion Tree

f(1,c)

/

},c)\ f(2,c-w,)
f(3,c) f(3,c-W,) f(3,c-w,) f(3,C-W; —W,)
/7 '\ /'
f(4,c) f(4,c-wy) f(4,c-w,) f(4,c-w; —wy)

/\ /N /N /\/\/\ VAN

f(5,c)
f(5,c-w; —w;—w,)

Time Complexity

Lett(n) be the time required whenitems are
available.

t(0) = t(1) = awhereais a constant.
Whent > 1,

t(n) <=2t(n-1) + b

whereb is a constant.

t(n) = O(2).

Solving dynamic programming recurrences a [
recursively can be hazardous to run time.




€ Reducing Run Time

f(1,c)

/

},c)\ f(2,c-w,)
f(3,c) f(3,c-W,) f(3,c-w,) f(3,C-W; —W,)
/7 '\ /'
f(4,c) f(4,c-wy) f(4,c-w,) f(4,c-w; —wy)

/\ /N /N /\/\/\ VAN

f(5,c)
f(5,c-w; —w;—w,)

Time Complexity

Leveli of the recursion tree has upAd nodes.
At each such node df,y) is computed.
Several nodes may compute the séfng) .

We can save time by not recomputing already
computed(i,y)s.

Save computefli,y)s in a dictionary.

= Key is(l, y) value.

= f(i, y) is computed recursively only whény) is not in
the dictionary.

= Otherwise, the dictionary value is used.




Integer Weights

Assume that each weight is an integer.

The knapsack capacitymay also be assumed
to be an integer.

Onlyf(i,y)swithl <=i<=nand0 <=y <=c¢
are of interest.

Even though levelof the recursion tree has up
to 21 nodes, at most+1represent different

f(i,y)s.

Integer Weights Dictionary

Use an arrayArray[|[] as the dictionary.
fArray[1:n][O:c]
fArray[i][y] = -1 iff f(i,y) not yet computed.

This initialization is done before the recursivetinosl
is invoked.

The initialization take®(cn)time.




No Recomputation Code .

private static inf(inti, inty)

{
if (fFArray[i][y] >= 0) returnfArray[i]ly];

it (i == n) {fArray[i]ly] = (y <wI[n]) ? 0 : p[n];
returnfArray[i][y];}

it (y <wli]) fArray[i]ly] =f(i + 1, y);

elsefArray[i][y] = Math.max(f(i + 1, y),

f(i+ 1,y -wli) + pli]);
returnfArray[i][y];

Time Complexity

* t(n) = O(cn)
» Analysis done in text.
e Good whercnis smallrelative to2".
e N=3¢c=1010101
w =[100102 1000321 6327]
p =[102 505 3]
e 2"=8
e cn =3030303




