Divide-And-Conquer Sorting

* Small instance.
= n <= lelements.
= n <= 10elements.
= We'll usen <= 1for now.
 Large instance.
= Divide intok >= 2smaller instances.
"k=23,4,...7
= What does each smaller instance look like?
= Sort smaller instances recursively.
= How do you combine the sorted smaller instances?

Insertion Sort

a[0] aln2] afn1]

» Combining is done binsertinga[n-1]into the
sorteda[0:n-2].

e Complexity isO(r?).

» Usually implemented nonrecursively.

Selection Sort

a[o] aln2] a[n1)

The second smaller instance is sorted recursivelly.

Append the first smaller instance (largest
element) to the right end of the sorted smaller
instance.

Complexity isO(r?).
Usually implemented nonrecursively.

Insertion Sort

a[0] an2] a[n1)

e k=2
« Firstn - 1elements{[0:n-2) define one of the

smaller instances; last elemeafr(-1]) defines
the second smaller instance.

» a[0:n-2]is sorted recursively.
e a[n-1]is asmallinstance.

Selection Sort

a[0] aln2] afn1]

e k=2

» To divide a large instance into two smaller
instances, first find the largest element.

» The largest element defines one of the smaller

instances; the remainingl elementslefine the
second smaller instance.

Bubble Sort

» Bubble sort may also be viewed as a 2 divide-
and-conquesorting method.

 Insertion sort, selection sort and bubble sort
divide a large instance into one smaller instang
of sizen - 1and another one of side

« All three sort methods take(?) time.

D

« Divide-and-conquer algorithms generally have

¢ Whenk = 2andn = 24 divide into two smaller

* Whenk = 2andn = 25 divide into two smaller

Divide And Conquer

best complexity when a large instance is dividg
into smaller instances of approximately the sar
size.

instances of siz&2 each.

instances of siz&3and12, respectively.

Merge Sort
e k=2

the second smaller instance.

Each of the two smaller instances is sorted
recursively.

a process calleaherge
e Complexity isO(nlog n)
» Usually implemented nonrecursively.

« A=(2,5,6)

» Compare smallest elementsfofaindB and

« A=(2,5,6)

Merge Two Sorted Lists

B=(1,3, 8,09, 10)
C=()

merge smaller int€.

B=(3 8,9, 10)
C=(1)

Merge Two Sorted Lists

A=(

B=(8,9, 10)

C=(1,2,356)

When one ofA andB becomes empty, append
the other list taC.

O(1)time needed to move an element ifito

Total time isO(n + m) wheren andm are,
respectively, the number of elements initially ir
A andB.

Firstceil(n/2)elements define one of the smalle
instances; remaininigpor(n/2) elements define

* The sorted smaller instances are combined us

=

Merge Two Sorted Lists

A=(5,6)
B=(3, 8,9, 10)
C=(1,2)
« A=(5,6)
B =(8, 9, 10)
C=(1,2,3)
« A=(6)
B=(8,9, 10)
C=(,23,5)

Merge Sort

[8,3,13,6,2 5,9,10,1,7, 12, 4]

[8, 3,13, 6,2, 14, 5] [9, 10, 1,7, 12, 4]

[8,3,13,6] [2,14,5] [9,10,1] [7, 12, 4]
[8,3][13, 6] [2, 14][5] [9 {0] [[7 1/2]>1]
/N /N /N /N /N

(8] [3][13][6] [2] [14] [9] [10] [7] [12]

Merge Sort

[1,2,3,4,5,6, 7,.8,9, 10, 12, 13,14]
[2,3,5, 6,8, 13, 14] [1,4,7,9 10,12]
/6 N e
[3,6,8,13] [2,5,14] [1,9,10] [4,7,12]
[3,8][6, 13] [2, 14][5] [9 {0] [[7 1/2]>,]
/N /N /N /N /\\
[8] [3][13][6] [2] [14] [9] [10Q] [71 [12]

Time Complexity

Lett(n) be the time required to sarelements.
t(0) = t(1) = ¢ wherec is a constant.

« Whenn > 1,

t(n) = t(ceil(n/2)) + t(floor(n/2)) + dn

whered is a constant.

To solve the recurrence, assumis a power o
and use repeated substitution.

t(n) = O(n log n)

Merge Sort

e Downward pass over the recursion tree.
= Divide large instances into small ones.

« Upward pass over the recursion tree.

= Merge pairs of sorted lists.

Number of leaf nodes is

* Number of nonleaf nodes is1.

Time Complexity

e Downward pass.

= O(1)time at each node.

= O(n)total time at all nodes.
« Upward pass.

= O(n)time merging at each level that has a
nonleaf node.

= Number of levels i©(log n)
= Total time isO(n log n)

Nonrecursive Version

 Eliminate downward pass.

« Start with sorted lists of sizeand do
pairwise merging of these sorted lists as in
the upward pass.

Nonrecursive Merge Sort

o][1] [7] [12][4
VA
9] [l, 10] [7, 12] [4]

/ N/

[3,6,8,13] [2,5,9,14] [1,7,10,12] [4]

e
=
=
<]
=
N
=
B
g
<
=

[1,2,3,4,5,6,7,8,9,10, 12, 13, l4|]

Complexity
Sorted segment sizels?2, 4,8, ...
* Number of merge passescisil(log,n).
e Each merge pass takégn)time.
Total time isO(n log n)
NeedO(n) additional space for the merge.

* Merge sort is slower than insertion sort winen
<= 15(approximately). So definesanall instance
to be an instance with <= 15

Sort small instances using insertion sort.
Start with segment size 15,

Quick Sort

Small instance has <= 1 Every small instance is a
sorted instance.

To sort a large instance, selegtigot element from out
of then elements.

Partition then elements int® groupsleft, middleand
right.

Themiddlegroup contains only thgivot element.
All elements in théeft group are<= pivot

All elements in theight group are>= pivot

Sortleft andright groups recursively.

* Answer is sortedeft group, followed bymiddlegroup
followed by sortedight group.

Choice Of Pivot

 Pivot isleftmostelement in list that is to be sorte
= When sortinga[6:20], usea[6] as the pivot.
= Text implementation does this.

* Randomlyselect one of the elements to be sorte
as the pivot.

= When sortinga[6:20], generate a random numbeén
the rangé6, 20]. Usea(r] as the pivot.

o

Natural Merge Sort

* Initial sorted segments are the naturally ocurrifg
sorted segments in the input.

e Input=18, 9, 10, 2,5, 7,9, 11, 13, 15, 6, 12,.14]
* Initial segments are:

[8,9,10][2,5,7,9, 11, 13, 15][6, 12, 14]
2 (instead off) merge passes suffice.
» Segment boundaries hasp] > a[i+1].

Example

(612]8]5[11104]1[9[7]3]

Use6 as the pivot.

(2[5[4[1[3 MM 7[9]1d11 8]

Sort left and right groups recursively.

Choice Of Pivot

* Median-of-Three ruleFrom the leftmost, middle,
and rightmost elements of the list to be sorted,
select the one with median key as the pivot.

= When sortinga[6:20], examinea[6], a[13] ((6+20)/2)
anda[20]. Select the element with median (i.e., middle)
key.

= If a[6].key = 3Qa[13].key = 2anda[20].key = 10
a[20] becomes the pivot.

= If a[6].key = 3a[13].key = 2anda[20].key = 10a[6]
becomes the pivot.

Choice Of Pivot

= If a[6].key = 30a[13].key = 25anda[20].key = 10
a[13] becomes the pivot.

* When the pivot is picked at random or when the
median-of-three rule is used, we can use the qU
sort code of the text provided we first swap the
leftmost element and the chosen pivot.

swap

pivot

Partitioning Example Using
Additional Array

a [612]8]5]17104[1[9]7]3]

b [2[5[4]1]3 MM 7[9]1d11 8]

Sort left and right groups recursively.

In-Place Partitioning Example
a [Bl2]8[5[10104[1[9]7 M

a [B2[3[5]10104 MM 9[7[8]
a M2[3[s[1]10M0119]7]8]
a M2[3[5[1MM10119]7[8]

bigElements not to left ofsmallElement
terminate process. Swapvot andsmallElement

a RGN 0|11 9] 78]

ick

Partitioning Into Three Groups

e Sorta=16, 2, 8,5,11,10,4,1,9,7, 3]
 Leftmost elementq) is thepivot.
» When another arrdyis available:

= Scanafrom left to right (omit the pivot in this scan),
placing elements= pivotat the left end ob and the
remaining elements at the right encbof

= The pivot is placed at the remaining position oftihe

In-place Partitioning

« Find leftmost elemenb{gElemen} > pivot.

« Find rightmost elemens(allElement<
pivot.

» SwapbigElementandsmallElement
providedbigElements to the left of
smallElement

* Repeat.

Complexity

O(n)time to partition an array of elements.
Lett(n) be the time needed to sorelements.
t(0) = t(1) = ¢ wherec is a constant.

Whent > 1,

t(n) = t(|left]) + t(|right]) + dn

whered is a constant.

t(n) is maximum when eithgfeft| = Oor |right| =
0 following each partitioning.

Complexity

 This happens, for example, when theot is
always the smallest element.

 For the worst-case time,
t(n) =t(n-1) +dpn>1

 Use repeated substitution to get) = O(?).

* The best case arises wheégit|and|right|are
equal (or differ byl) following each partitioning.

» For the best case, the recurrence is the same a
for merge sort.

Complexity Of Quick Sort

» To improve performance, define a small instan
to be one wittn <= 15(say) and sort small
instances using insertion sort.

ce

java.util.arrays.sort

 Arrays of a nonprimitive data type are sorted us
merge sort.
= n < 7=>insertion sort
= skip merge when last elementleft segment is<=
first element ofight segment
» Merge sort isstable(relative order of elements
with equal keys is not changed).

* Quick sort is not stable.

Complexity Of Quick Sort

 So the best-case complexitydgn log n)

» Average complexity is als©(n log n)

» To help get partitions with almost equal size,
change in-place swap rule to:
= Find leftmost elemenb{gElemen} >= pivot.
= Find rightmost elemenstnallElement<= pivot.
= SwapbigElement@andsmallElemenprovided

bigElements to the left ofsmallElement

» O(n)space is needed for the recursion stack. M

be reduced t®(log n)(see Exercise 19.22).

2%

java.util.arrays.sort

 Arrays of a primitive data type are sorted using

quick sort.

= n < 7=>insertion sort

= 7 <= n <= 40=> median of three

= n > 40=>pseudo median ¢ equally spaced elementg
divide the9 elements int® groups
find the median of each group
pivot is median of th& group medians

