Divide And Conquer

 Distinguish between small and large instances
« Small instances solved differently from large ones.

Small And Large Instance

« Small instance.

= Sort a list that has <= 10elements.

* Find the minimum oh <= 2elements.
e Large instance.

= Sort a list that has > 10elements.

* Find the minimum oh > 2elements.




Solving A Small Instance

» A small instance is solved using some
direct/simple strategy.

= Sort a list that has <= 10elements.
« Use count, insertion, bubble, or selection sort.

= Find the minimum ofi <= 2elements.
« Whenn = (Q there is no minimum element.
« Whenn = 1, the single element is the minimum.

« Whenn = 2, compare the two elements and
determine which is smaller.

Solving A Large Instance

» A large instance is solved as follows:
* Divide the large instance into>= 2smaller instances
= Solve the smaller instances somehow.

= Combine the results of the smaller instances taiobt
the result for the original large instance.




Sort A Large List

e Sort a list that has > 10elements.

= Sortl5elements by dividing them intbsmaller lists.
»0One list hag elements and the other Has
= Sort these two lists using the method for smati lis

= Merge the two sorted lists into a single sorted lis

Find The Min Of A Large List

e Find the minimum o020 elements.
= Divide into two groups 0f0 elements each.

* Find the minimum element in each group somehow.

= Compare the minimums of each group to determing
the overall minimum.

1%




Recursion In Divide And Conquer

« Often the smaller instances that result from the
divide step are instances of the original problem
(true for our sort and min problemsi this case,

= |f the new instance is@mallinstance, it is solved
using the method for small instances.

= |f the new instance islargeinstance, it is solved using
the divide-and-conquer method recursively.
* Generally, performance is best when the smaller
instances that result from the divide step are of
approximately the same size.

Recursive Find Min

e Find the minimum o020 elements.
= Divide into two groups 0f0 elements each.

* Find the minimum element in each group
recursively The recursion terminates when the
number of elements is= 2. At this time the
minimum is found using the method for small
instances.

= Compare the minimums of the two groups to
determine the overall minimum.




Z Tiling A Defective Chessboarii

AN W R OO - @
- N W e -

Z Our Definition Of A Chessboariit

A chessboare ann x ngrid, wherenis a
power of2.

1x1 2X2 4x4 8x8




% A Defective Chessboatd ¥

A defective chessboarsl a chessboard that
has one unavailable (defective) position.

1x1 2X2 4x4 8x8

] A Triomino ]

A triominois anL shaped object that can
cover three squares of a chessboard.

A triomino has four orientations.




~1 Tiling A Defective Chessboart

Place(n? - 1)/3triominoes on am x n
defective chessboard so thatralt 1
nondefective positions are covered.

]
e =

1x1 2X2 4x4 8x8

I Tiling A Defective Chessboarc

Divide into four smaller chessboardsx 4

One of these is a defectivex 4chessboard.




~1 Tiling A Defective Chessboarc.-

Make the other threé x 4chessboards defectivs
by placing a triomino at their common corner.

Recursively tile the four defectivex 4
chessboards.

117

~1 Tiling A Defective Chessboarc.




Complexity

Letn = X,

Let t(k) be the time taken to tileZt x 2«
defective chessboard.

t(0) = d whered is a constant.

t(k) = 4t(k-1) + ¢ whenk > 0. Herecis a
constant.

Recurrence equation fap).

Substitution Method
t(k) = 4t(k-1) + c
=4[4t(k-2) +d + ¢
= £t(k-2) +4c+cC
= A[4t(k-3) +d +4c +c
=£tk-3)+%c+4c+cC

=4t(0) +&lc+4&°%c+..+4& +4c+cC
=4 d+4&lc+4°%c+...+4& +4c+cC
= Theta(4)

= Theta(hnumber of triominoes placed)




Min And Max

Find the lightest and heaviestio&lements
using a balance that allows you to compare
the weight o2 elements.

Al

Minimize the number of comparisons.

Max Element

* Find element with max weight from
w[0:n-1].

maxElement = O
for (inti=1;i<n;i++)

if (w[maxElement] < w][i]) maxElement = i;

* Number of comparisons of values isn-1.




Min And Max

* Find the max ofi elements making-1
comparisons.

e Find the min of the remaining-1 elements
makingn-2 comparisons.

e Total number of comparisonsis-3.

Divide And Conquer

« Small instance.
"n<=2
* Find the min and max element making at most
one comparison.




Large Instance Min And Max

"nN>2

= Divide then elements int@ groupsA andB
with floor(n/2) andceil(n/2)elements,
respectively.

* Find the min and max of each group
recursively.

= Overall min ismin{min(A), min(B)}.
= Overall max isnax{max(A), max(B)}

Min And Max Example

Find the min and max 48,5,6,2,4,9,3,1}
Large instance.

A ={3,5,6,2}andB = {4,9,3,1}.

min(A) =2, min(B) = 1

max(A) = g max(B) =9
min{min(A),min(B)} = 1.

max{max(A), max(B)} =9




Dividing Into Smaller Instances

O
(8,2,6,3,9) /

6,39} {175

{6}/ 39} (1 \{7,5} (4} 2,8)
© © O

{8,2,6,3,9,1,7,5,4,2,8}

{1,7,5,4,2,8}

{8,2} {4,2,8}

Solve Small Instances And Combin

©6 39 (LU {57} {44 {28

e



Time Complexity

Let c(n) be the number of comparisons made
when finding the min and max afelements.

c(0)=c(1)=0
c(2) =1
Whenn > 2,

c(n) = c(floor(n/2)) + c(ceil(n/2)) + 2
To solve the recurrence, assumis a power of?
and use repeated substitution.

c(n) = ceil(3n/2) - 2

Interpretation Of Recursive Versiol

The working of a recursive divide-and-conquer atyon
can be described by a treeeeursion tree

The algorithm moves down the recursion tree digdarge
instances into smaller ones.

Leaves represestmallinstances.

The recursive algorithm moves back up the tree coinmp
the results from the subtrees.

The combining finds the min of the mins computed at
leaves and the max of the leaf maxs.




Downward Pass Divides Into Smallé
Instances

{8,2,6,3,9,1,7,5,4,2,8}

{1,7,5,4,2,8}

O
(8,2,6,3,9) /

6,39} {175

{6}/ 39} (1 \{7,5} (4} 2,8}
© 0 O

{8,2} {4,2,8}

D
-

Upward Pass Combines Results Fr¢
Subtrees

(6,6} {39 {11} {57} {4,y {28}




Ilterative Version

 Start withn/2 groups with2 elements each
and possiblyi group that has judtelement.

* Find the min and max in each group.
* Find the min of the mins.
* Find the max of the maxs.

Iterative Version Example

« {2,8,3,6,9,1,7,5,4,2,8}

* {2,8}.{3.,6},{9,1}, {7.,5}, {4,2}, {8}
 mins ={2,3,1,5,2,8}

* maxs = {8,6,9,7,4,8}

e MNOfMins =1

« maxOfMaxs =9




Comparison Count

Start withn/2 groups with2 elements each
and possiblyi group that has judtelement.

= No compares.

Find the min and max in each group.
= floor(n/2) compares.

Find the min of the mins.

= ceil(n/2) - 1lcompares.

Find the max of the maxs.

= ceil(n/2) - 1lcompares.

Total isceil(3n/2) - 2compares.

Initialize A Heap

n>1
= |nitialize left subtree and right subtree recursively.
= Then do a trickle down operation at the root.

th)=gn<=1

t(n) = 2t(n/2) + d * heightn > 1

c andd are constants.

Solve to get(n) = O(n)

Implemented iteratively in Chapter 13.




Initialize A Loser Tree

n>1

= |nitialize left subtree.

= |nitialize right subtree.

= Compare winners from left and right subtrees.
= Loser is saved in root and winner is returned.
th) =gn<=1

t(n) = 2t(n/2) + dn > 1

c andd are constants.

Solve to get(n) = O(n)

Implemented iteratively in Chapter 14.




