
Minimum-Cost Spanning Tree

• weighted connected undirected graph

• spanning tree

• cost of spanning tree is sum of edge costs

• find spanning tree that has minimum cost

Example

• Network has 10 edges.

• Spanning tree has only n - 1 = 7edges.

• Need to either select 7 edges or discard 3.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

Edge Selection Greedy Strategies

• Start with an n-vertex 0-edge forest.
Consider edges in ascending order of cost.
Select edge if it does not form a cycle
together with already selected edges.
� Kruskal’s method.

• Start with a 1-vertex tree and grow it into an
n-vertex tree by repeatedly adding a vertex
and an edge. When there is a choice, add a
least cost edge.
� Prim’s method.

Edge Selection Greedy Strategies

• Start with an n-vertex forest. Each
component/tree selects a least cost edge to
connect to another component/tree.
Eliminate duplicate selections and possible
cycles. Repeat until only 1 component/tree
is left.
� Sollin’s method.

Edge Rejection Greedy Strategies

• Start with the connected graph. Repeatedly
find a cycle and eliminate the highest cost
edge on this cycle. Stop when no cycles
remain.

• Consider edges in descending order of cost.
Eliminate an edge provided this leaves
behind a connected graph.

Kruskal’s Method

• Start with a forest that has no edges.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

• Consider edges in ascending order of cost.

• Edge (1,2) is considered first and added to
the forest.

Kruskal’s Method

• Edge (7,8) is considered next and added.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

2
3

• Edge (3,4) is considered next and added.

4

• Edge (5,6) is considered next and added.

6

• Edge (2,3) is considered next and added.

7

• Edge (1,3) is considered next and rejected
because it creates a cycle.

Kruskal’s Method

• Edge (2,4) is considered next and rejected
because it creates a cycle.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

2
34

• Edge (3,5) is considered next and added.

6

10

• Edge (3,6) is considered next and rejected.

7

• Edge (5,7) is considered next and added.

14

Kruskal’s Method

• n - 1 edges have been selected and no cycle
formed.

• So we must have a spanning tree.

• Cost is 46.

• Min-cost spanning tree is unique when all
edge costs are different.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

2
34 6

10

7

14

Prim’s Method

• Start with any single vertex tree.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

5

• Get a 2-vertex tree by adding a cheapest edge.

6

6

• Get a 3-vertex tree by adding a cheapest edge.

3
10

• Grow the tree one edge at a time until the tree
has n - 1 edges (and hence has all n vertices).

4

4

2

7
1

2

7
14

8

3

Sollin’s Method

1 3 5 7

2 4 6 8

2 4 6 3

10 14

127

9

• Start with a forest that has no edges.

1 3 5 7

2 4 6 8

• Each component selects a least cost edge
with which to connect to another component.

• Duplicate selections are eliminated.

• Cycles are possible when the graph has
some edges that have the same cost.

2 4 6 3

8

Sollin’s Method

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

• Each component that remains selects a
least cost edge with which to connect to
another component.

• Beware of duplicate selections and cycles.

7
2 4 6 3

10 14

Greedy Minimum-Cost Spanning Tree Methods

• Can prove that all result in a minimum-cost
spanning tree.

• Prim’s method is fastest.
� O(n2) using an implementation similar to that of

Dijkstra’s shortest-path algorithm.
� O(e + n log n) using a Fibonacci heap.

• Kruskal’s uses union-find trees to run in
O(n + e log e) time.

Pseudocode For Kruskal’s Method

Start with an empty set T of edges.

while (E is not empty && |T| != n-1)

{

Let (u,v) be a least-cost edge in E.

E = E - {(u,v)}. // delete edge from E

if ((u,v) does not create a cycle inT)

Add edge (u,v) to T.

}

if (| T | == n-1) T is a min-cost spanning tree.

elseNetwork has no spanning tree.

Data Structures For Kruskal’s Method

Edge set E.

Operations are:
� Is E empty?

� Select and remove a least-cost edge.

Use a min heap of edges.
� Initialize. O(e) time.

� Remove and return least-cost edge. O(log e) time.

Data Structures For Kruskal’s Method

Set of selected edges T.

Operations are:
� Does T have n - 1 edges?

� Does the addition of an edge (u, v) to T result in a
cycle?

� Add an edge to T.

Data Structures For Kruskal’s Method

Use an array linear list for the edges of T.
� Does T have n - 1 edges?

• Check size of linear list. O(1) time.

� Does the addition of an edge (u, v) to T result in a
cycle?
• Not easy.

� Add an edge to T.
• Add at right end of linear list. O(1) time.

Just use an array rather thanArrayLinearList.

Data Structures For Kruskal’s Method
Does the addition of an edge (u, v) to T result in

a cycle?

1 3 5 7

2 4 6 8

2
34 67

• Each component of T is a tree.

• When u and v are in the same component, the
addition of the edge (u,v) creates a cycle.

• When u and v are in the different
components, the addition of the edge (u,v)
does not create a cycle.

Data Structures For Kruskal’s Method

1 3 5 7

2 4 6 8

2 34 67

• Each component of T is defined by the
vertices in the component.

• Represent each component as a set of
vertices.
� {1, 2, 3, 4}, {5, 6}, {7, 8}

• Two vertices are in the same component iff
they are in the same set of vertices.

Data Structures For Kruskal’s Method

• When an edge (u, v) is added to T, the two
components that have verticesu andv
combine to become a single component.

1 3 5 7

2 4 6 8

2 34 67

• In our set representation of components, the
set that has vertexu and the set that has vertex
v are united.
� {1, 2, 3, 4} + {5, 6} => {1, 2, 3, 4, 5, 6}

Data Structures For Kruskal’s Method
• Initially, T is empty.

1 3 5 7

2 4 6 8

• Initial sets are:
� {1} {2} {3} {4} {5} {6} {7} {8}

• Does the addition of an edge (u, v) to T result
in a cycle? If not, add edge to T.

s1 = find(u); s2 = find(v);

if (s1 != s2) union(s1, s2);

Data Structures For Kruskal’s Method
• UseFastUnionFind.

• Initialize.
� O(n) time.

• At most 2e finds and n-1 unions.
� Very close to O(n + e).

• Min heap operations to get edges in
increasing order of cost take O(e log e).

• Overall complexity of Kruskal’s method is
O(n + e log e).

