
Shortest Path Problems

• Directed weighted graph.

• Path length is sum of weights of edges on path.

• The vertex at which the path begins is the 
source vertex.

• The vertex at which the path ends is the 
destination vertex.

Example

A path from 1 to 7.
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Path length is  14.

Example

Another path from 1 to 7.
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Path length is  11.

Shortest Path Problems

• Single source single destination.

• Single source all destinations.

• All pairs (every vertex is a source 
and destination).



Single Source Single Destination

Possible greedy algorithm:
� Leave source vertex using cheapest/shortest edge.

� Leave new vertex using cheapest edge subject to the 
constraint that a new vertex is reached.

� Continue until destination is reached.

Greedy Shortest 1 To 7 Path
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Path length is  12. 

Not shortest path. Algorithm doesn’t work!

Single Source All Destinations

Need to generate up to n (n is number of vertices) 
paths (including path from source to itself).

Greedy method:
� Construct these up to n paths in order of increasing 

length.

� Assume edge costs (lengths) are >= 0.

� So, no path has length < 0.

� First shortest path is from the source vertex to itself. 
The length of this path is 0.

Greedy Single Source All Destinations
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Path Length
1 0

1 3 2

1 3 55

1 2 6

1 3 95 4

1 3 106

1 3 116 7



Greedy Single Source All Destinations
Path Length
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•• Each path (other than 
first) is a one edge 
extension of a previous 
path.

•Next shortest path is 
the shortest one edge 
extension of an already 
generated shortest path.

Greedy Single Source All Destinations

• Let d(i) (distanceFromSource(i)) be the length of 
a shortest one edge extension of an already 
generated shortest path, the one edge extension 
ends at vertex i.

• The next shortest path is to an as yet unreached
vertex for which the d() value is least.

• Let p(i) (predecessor(i)) be the vertex just before 
vertex i on the shortest one edge extension to i.

Greedy Single Source All Destinations
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Greedy Single Source All Destinations
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Single Source Single Destination

Terminate single source all destinations 
greedy algorithm as soon as shortest path to 
desired vertex has been generated.

Data Structures For Dijkstra’s Algorithm

• The greedy single source all destinations 
algorithm is known as Dijkstra’s algorithm.

• Implement d() andp() as 1D arrays.
• Keep a linear list L of reachable vertices to 

which shortest path is yet to be generated.
• Select and remove vertexv in L that has smallest 

d() value.
• Update d() and p() values of vertices adjacent to 

v.

Complexity

• O(n) to select next destination vertex.

• O(out-degree) to update d() andp() values 
when adjacency lists are used.

• O(n) to update d() andp() values when 
adjacency matrix is used.

• Selection and update done once for each 
vertex to which a shortest path is found.

• Total time is O(n2 + e) = O(n2).



Complexity

• When a min heap of d() values is used in 
place of the linear list L of reachable 
vertices, total time is O((n+e) log n), 
because O(n) remove min operations and 
O(e) change key (d() value) operations are 
done.

• When e is O(n2), using a min heap is worse 
than using a linear list.

• When a Fibonacci heap is used, the total 
time is O(n log n + e).


