
Shortest Path Problems

• Directed weighted graph.

• Path length is sum of weights of edges on path.

• The vertex at which the path begins is the
source vertex.

• The vertex at which the path ends is the
destination vertex.

Example

A path from 1 to 7.

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1
1

7

Path length is 14.

Example

Another path from 1 to 7.

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

Path length is 11.

Shortest Path Problems

• Single source single destination.

• Single source all destinations.

• All pairs (every vertex is a source
and destination).

Single Source Single Destination

Possible greedy algorithm:
� Leave source vertex using cheapest/shortest edge.

� Leave new vertex using cheapest edge subject to the
constraint that a new vertex is reached.

� Continue until destination is reached.

Greedy Shortest 1 To 7 Path

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

Path length is 12.

Not shortest path. Algorithm doesn’t work!

Single Source All Destinations

Need to generate up to n (n is number of vertices)
paths (including path from source to itself).

Greedy method:
� Construct these up to n paths in order of increasing

length.

� Assume edge costs (lengths) are >= 0.

� So, no path has length < 0.

� First shortest path is from the source vertex to itself.
The length of this path is 0.

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

Path Length
1 0

1 3 2

1 3 55

1 2 6

1 3 95 4

1 3 106

1 3 116 7

Greedy Single Source All Destinations
Path Length

1 0

1 3 2

1 3 55

1 2 6

1 3 95 4

1 3 106

1 3 116 7

•• Each path (other than
first) is a one edge
extension of a previous
path.

•Next shortest path is
the shortest one edge
extension of an already
generated shortest path.

Greedy Single Source All Destinations

• Let d(i) (distanceFromSource(i)) be the length of
a shortest one edge extension of an already
generated shortest path, the one edge extension
ends at vertex i.

• The next shortest path is to an as yet unreached
vertex for which the d() value is least.

• Let p(i) (predecessor(i)) be the vertex just before
vertex i on the shortest one edge extension to i.

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

0
-

1

2

3

4 7

6
1

2
1

16
1

-
-

-
-

14
1

2

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

16
1

-
-

-
-

14
1

1 3

2

5

6

5
3

10
3

5

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

16
1

-
-

-
-

14
1

1 3

5
3

10
3

1 3 5

4 7

9
5

6

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

9
5

-
-

-
-

14
1

1 3

5
3

10
3

1 3 5

1 2

4

9

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

9
5

-
-

-
-

14
1

1 3

5
3 3

1 3 5

1 2

1 3 5 4

7

12
4

10

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

0
-

6
1

2
1

9
5

-
-

-
-

14
1

5
3

10
3

12
4

1 3 6

7

11
6

Greedy Single Source All Destinations
Path

1 0

1 3 2

1 3 55

1 2 6

1 3 95 4

1 3 106

1 3 116 7

Length

[1] [2] [3] [4] [5] [6] [7]
0
-

6
1

2
1

9
5

-
-

-
-

1
41

5
3

10
3

12
4
11
6

Single Source Single Destination

Terminate single source all destinations
greedy algorithm as soon as shortest path to
desired vertex has been generated.

Data Structures For Dijkstra’s Algorithm

• The greedy single source all destinations
algorithm is known as Dijkstra’s algorithm.

• Implement d() andp() as 1D arrays.
• Keep a linear list L of reachable vertices to

which shortest path is yet to be generated.
• Select and remove vertexv in L that has smallest

d() value.
• Update d() and p() values of vertices adjacent to

v.

Complexity

• O(n) to select next destination vertex.

• O(out-degree) to update d() andp() values
when adjacency lists are used.

• O(n) to update d() andp() values when
adjacency matrix is used.

• Selection and update done once for each
vertex to which a shortest path is found.

• Total time is O(n2 + e) = O(n2).

Complexity

• When a min heap of d() values is used in
place of the linear list L of reachable
vertices, total time is O((n+e) log n),
because O(n) remove min operations and
O(e) change key (d() value) operations are
done.

• When e is O(n2), using a min heap is worse
than using a linear list.

• When a Fibonacci heap is used, the total
time is O(n log n + e).

