Shortest Path Problems

Directed weighted graph.

Path length is sum of weights of edges on path.

The vertex at which the path begins is the
sourcevertex.

The vertex at which the path ends is the
destinatiorvertex.

=

Example

A path fromlto 7.
Path length isl14.




Another path froni to 7.
Path length isl11,

Shortest Path Problems

» Single source single destination.
» Single source all destinations.

» All pairs (every vertex is a source
and destination).




Single Source Single Destination

Possible greedy algorithm:
= Leave source vertex using cheapest/shortest edge

* Leave new vertex using cheapest edge subject to t
constraint that a new vertex is reached.

= Continue until destination is reached.

Greedy Shortest 1 To 7 Path

Path length is12,

Not shortest path. Algorithm doesn’t work!




Single Source All Destinations

Need to generate up ta(n is number of vertices)
paths (including path from source to itself).

Greedy method:

= Construct these up topaths in order of increasing
length.

= Assume edge costs (lengths) are0.
* S0, no path has lengthO.

= First shortest path is from the source vertexdeliit
The length of this path &

Greedy Single Source All Destinationg




Greedy Single Source All Destinations

Path Length

0 » Each path (other than
first) is a one edge

2 extension of a previous
path.

e

6 *Next shortest path is
the shortest one edge

1 (DB 4 9 extension of an already
Q = O generated shortest path.
10
O—E—@—0

Greedy Single Source All Destinations

o Letd(i) (distanceFromSourcejibe the length of
a shortest one edge extension of an already
generated shortest path, the one edge extensipn
ends at vertex

» The next shortest path is to an as yet unreach¢
vertex for which thel() value is least.

o Letp(i) (predecessor()be the vertex just before
vertexi on the shortest one edge extension to

1%
o




Greedy Single Source All Destinationg

[1] [2] [31 [4] [3] [6] [7]
d 0 6 [(2/16 - - 14
p - 1 1 1 1

Greedy Single Source All Destinationg

[1] [2] [3] [4] [3] [6] [7]
d 0 6 216 5 10 14
p- 1 1 1 3 3 1




Greedy Single Source All Destinationg

[1] [2] [3] [4] [5] [6] [7]
d 0 g 2 9 5 10 14
p- 1 1 5 3 3 1

@606

Greedy Single Source All Destinationg

[1] [2] [3] [4] [5] [6]1 [7]
d 0 6 2 g 5 10 14
p- 1 1 5 3 3 1

@—-60-6
@0




Greedy Single Source All Destinationg

@O—0B [1] [2] [3] [4] [5] [6] [7]
@ﬁ@_)@ d 0 6 2 9 5 10 12

- 1 1 5 3 3 4
@—@ g

@—-60-6-0

Greedy Single Source All Destinations

@—@—@® (1] [21 [3] [4] [5] [6] [7]
40 6 2 9 5 10 11
o - 1 1 5 3 3 6




Greedy Single Source All Destinationg

Path Length
(D 0
@@ -
@06 5
O—® 6
@—-0—-60-0°

® ©
@ @
@ @

[1]1 [2] [3] [4] [5] [6] [7]

6 2 9 5 10 11
1 1 5 3 3 6

Single Source Single Destination

Terminate single source all destinations
greedy algorithm as soon as shortest path to
desired vertex has been generated.




Data Structures For Dijkstra’s Algorithn

* The greedy single source all destinations
algorithm is known as Dijkstra’s algorithm.

Implementd() andp() as 1D arrays.

Keep a linear list. of reachable vertices to
which shortest path is yet to be generated.

Select and remove vertexn L that has smallest
d() value.

Updated() andp() values of vertices adjacent to
V.

Complexity

* O(n)to select next destination vertex.

* O(out-degreeto updated() andp() values
when adjacency lists are used.

e O(n)to updatel() andp() values when
adjacency matrix is used.

» Selection and update done once for each
vertex to which a shortest path is found.

 Total time isO(r¥ + e) = O(rA).

—



Complexity

 When a min heap af() values is used in
place of the linear ligt of reachable
vertices, total time i®((n+e) log n)
becausé)(n) remove min operations and
O(e)change keyd() value) operations are
done.

« Wheneis O(r?), using a min heap is worse
than using a linear list.

 When a Fibonacci heap is used, the total
time isO(nlog n + e)




