
Graph Search Methods
• A vertex u is reachablefrom vertex v iff there is a

path from v to u.

2
3

8

10

1

4
5

9

11
6

7

Graph Search Methods
• A search method starts at a given vertex v and

visits/labels/marks every vertex that is reachable
from v.

2
3

8

10

1

4
5

9

11
6

7

Graph Search Methods
• Many graph problems solved using a search

method.
� Path from one vertex to another.

� Is the graph connected?

� Find a spanning tree.

� Etc.

• Commonly used search methods:
� Breadth-first search.

� Depth-first search.

Breadth-First Search

• Visit start vertex and put into a FIFO queue.

• Repeatedly remove a vertex from the queue, visit
its unvisited adjacent vertices, put newly visited
vertices into the queue.

Breadth-First Search Example

Start search at vertex 1.

2
3

8

10

1

4
5

9

11
6

7

Breadth-First Search Example

Visit/mark/label start vertex and put in a FIFO queue.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue

1

Breadth-First Search Example

Remove 1 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue

1

Breadth-First Search Example

Remove 1 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

2

4

4

Breadth-First Search Example

Remove 2 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

2

4

4

Breadth-First Search Example

Remove 2 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4

4

5

5
3

3

6

6

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4

4

5

5
3

3

6

6

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

5
3

3

6

6

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

5
3

3

6

6

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

9

7

7

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

9

7

7

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

78 8

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

78 8

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8 8

Breadth-First Search Example

Remove 8 from Q; visit adjacent unvisited vertices;

put in Q.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8 8

Breadth-First Search Example

Queue is empty. Search terminates.

2
3

8

10

1

4
5

9

11
6

7

1

FIFO Queue2

4
5

3

6

9

7

8

Breadth-First Search Property

• All vertices reachable from the start vertex
(including the start vertex) are visited.

Time Complexity

• Each visited vertex is put on (and so
removed from) the queue exactly once.

• When a vertex is removed from the queue,
we examine its adjacent vertices.
� O(n) if adjacency matrix used
� O(vertex degree)if adjacency lists used

• Total time
� O(mn), where m is number of vertices in the

component that is searched (adjacency matrix)

Time Complexity

� O(n + sum of component vertex degrees)(adj.
lists)

= O(n + number of edges in component)

Path From Vertex v To Vertex u

• Start a breadth-first search at vertex v.

• Terminate when vertex u is visited or when
Q becomes empty (whichever occurs first).

• Time
� O(n2) when adjacency matrix used

� O(n+e)when adjacency lists used (e is number
of edges)

Is The Graph Connected?

• Start a breadth-first search at any vertex of
the graph.

• Graph is connected iff all n vertices get
visited.

• Time
� O(n2) when adjacency matrix used

� O(n+e)when adjacency lists used (e is number
of edges)

Connected Components

• Start a breadth-first search at any as yet
unvisited vertex of the graph.

• Newly visited vertices (plus edges between
them) define a component.

• Repeat until all vertices are visited.

Connected Components

2
3

8

10

1

4
5

9

11
6

7

Time Complexity

�O(n2) when adjacency matrix used

�O(n+e)when adjacency lists used (e
is number of edges)

Spanning Tree

Breadth-first search from vertex 1.

2
3

8
1

4
5

9

6
7

1

2

4

3

6

5
9

7

8

Breadth-first spanning tree.

Spanning Tree

• Start a breadth-first search at any vertex of
the graph.

• If graph is connected, the n-1 edges used to
get to unvisited vertices define a spanning
tree (breadth-first spanning tree).

• Time
� O(n2) when adjacency matrix used
� O(n+e)when adjacency lists used (e is number

of edges)

Depth-First Search

depthFirstSearch(v)

{

Label vertex v as reached.

for (each unreached vertexu

adjacenct from v)

depthFirstSearch(u);

}

Depth-First Search Example

Start search at vertex 1.

2
3

8

10

1

4
5

9

11
6

7

Label vertex 1 and do a depth first search
from either2 or 4.

1

2

Suppose that vertex 2 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 2 and do a depth first search
from either3, 5, or 6.

1

22

5

Suppose that vertex 5 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 5 and do a depth first search
from either3, 7, or 9.

1

22

55
9

Suppose that vertex 9 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 9 and do a depth first search
from either6 or 8.

1

22

55
99

8

Suppose that vertex 8 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

Label vertex 8 and return to vertex9.

1

22

55
99

88

From vertex 9 do adfs(6).

6

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Label vertex 6 and do a depth first search from
either4 or 7.

66

4

Suppose that vertex 4 is selected.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Label vertex 4 and return to 6.

66

44

From vertex 6 do adfs(7).

7

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

Label vertex 7 and return to 6.

66

44

77

Return to 9.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Return to 5.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Do adfs(3).

3

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

Label 3 and return to 5.

33

Return to 2.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

33

Return to 1.

Depth-First Search Example
2

3

8

10

1

4
5

9

11
6

7

1

22

55
99

88

66

44

77

33

Return to invoking method.

Depth-First Search Properties

• Same complexity as BFS.

• Same properties with respect to path
finding, connected components, and
spanning trees.

• Edges used to reach unlabeled vertices
define a depth-first spanning tree when the
graph is connected.

• There are problems for which bfs is better
than dfs and vice versa.

