Graph Operations And

Representation
s

Sample Graph Problems

e Path problems.
» Connectedness problems.
e Spanning tree problems.

Path Finding

Path between and8.

Path length i20.

Another Path Between 1 and 8

Path length i28.

Example Of No Path

AN

No path betweef and9.

Connected Graph

« Undirected graph.

* There is a path between every pair of
vertices.

Example Of Not Connected

AN

Connected Graph Example

Connected Components

Connected Component

< A maximal subgraph that is connected.

= Cannot add vertices and edges from original
graph and retain connectedness.

» A connected graph has exactly

component.

Not A Component

Communication Network

Each edge is a link that can be constructed
(i.e., a feasible link).

Communication Network Problems

* |Is the network connected?
= Can we communicate between every pair of
cities?
 Find the components.
* Want to construct smallest number of
feasible links so that resulting network is
connected.

Cycles And Connectedness

Connected subgraph with all vertices and
minimum number of edges has no cycles.

Cycles And Connectedness

Removal of an edge that is on a cycle does not affect
connectedness.

7’)‘: Tree ﬂ)‘:

e Connected graph that has no cycles.
e nvertex connected graph with1 edges.

Spanning Tree

» Subgraph that includes all vertices of the
original graph.
e Subgraph is a tree.

= If original graph has vertices, the spanning
tree has) vertices andh-1 edges.

Minimum Cost Spanning Tree

@
VS

« Tree cost is sum of edge weights/costs.

A Spanning Tree

Spanning tree cost51

Minimum Cost Spanning Tree

R @
LN

Spanning tree cost41

A Wireless Broadcast Tree

Source= 1, weights = needed power.
Cost=4+8+5+6+7+8+3=41

Graph Representation

< Adjacency Matrix

« Adjacency Lists
= Linked Adjacency Lists
= Array Adjacency Lists

Adjacency Matrix

¢ 0/1 n x nmatrix, wheren =# of vertices
« A(,j) = 1iff (i,j) is an edge

1 2 345
@ 1o 101 0
®/ 21 0 00 1
3o o001

@; 41 0 0 0 1
5o 1110

Adjacency Matrix Properties

1 2 3 45
@ 1fec1 01 0

®/ 211 e 0 0 1
3lo 0o e 01

@ 411 0 0 0 1
51011 190

eDiagonal entries are zero.

eAdjacency matrix of an undirected graph is
symmetric.

=A(i,j) = AG,i) for all i and;.

Adjacency Matrix (Digraph)

1 2 3 45
@ 1fo oo 10

®/ 211 0 0 0 1
3loooo0o0

\(‘D*» 410 0 0 0 1
5101100

eDiagonal entries are zero.

eAdjacency matrix of a digraph need not be
symmetric.

Adjacency Matrix

* n? bits of space

» For an undirected graph, may store only
lower or upper triangle (exclude diagonal).
= (n-1)n/2bits

e O(n)time to find vertex degree and/or
vertices adjacent to a given vertex.

Adjacency Lists

» Adjacency list for vertexis a linear list of
vertices adjacent from vertéx

» An array ofn adjacency lists.
aList[1] = (2,4)
aList[2] = (1,5)

[
®/ aList[3] = (5)
C aList[4] = (5,1)
[

aList[5] = (2,4,3)

Linked Adjacency Lists

» Each adjacency list is a chain.
aListi1jilii-2IE-21
¢ g -
(3]
@ i B
— aList[5] B3l
Array Length=n

of chain nodes 2e(undirected graph)

of chain node = e (digraph

Array Adjacency Lists

» Each adjacency list is an array list.

@ aList[1]
o [Z]IE%
a
b— aList[S]t%@

Array Length=n
of list elements: 2e(undirected graph)

of list elemeni = e(digraph

Weighted Graphs

» Cost adjacency matrix.
= C(i,J)) = cost of edgéi,))

» Adjacency lists=> each list element is a
pair (adjacent vertex, edge weight)

Number Of Java Classes Needec

» Graph representations
= Adjacency Matrix
= Adjacency Lists
~Linked Adjacency Lists
~ Array Adjacency Lists
= 3representations
« Graph types
= Directed and undirected.
* Weighted and unweighted.
= 2 x 2 = 4graph types
e 3 x4 =12Java classes

Abstract Class Graph

packagedataStructures;
importjava.util.*;

public abstract clasSraph
{

/I ADT methods come here

/I create an iterator for vertex i
public abstract Iterator iterator(int i);

/I implementation independent methods come here

}

Abstract Methods Of Graph

/I ADT methods

public abstract intertices();

public abstract inédges();

public abstract booleagxistsEdgeft i, int j);
public abstract voighutEdgeQbjecttheEdge);
public abstract voidemoveEdgeft i, int j);
public abstract intlegreeifit i);

public abstract ininDegreeint i);

public abstract inbutDegresiit i);

