Graph Operations And
Representation - %
et

Sample Graph Problems

e Path problems.
e Connectedness problems.
¢ Spanning tree problems.

Path Finding

Path betweef and8.
i (8) @
5
(5) s
(w

Path length i0.

Another Path Between 1 and 8

@ 3

Path length i£8.

Example Of No Path

@/\f

No path betweefi and9.

Connected Graph

< Undirected graph.
« There is a path between every pair of

vertices.

Example Of Not Connected

@/\f

Connected Graph Example

Connected Components

N
NS

Connected Component

< A maximal subgraph that is connected.
= Cannot add vertices and edges from original
graph and retain connectedness.
* A connected graph has exacily
component.

Not A Component

Communication Network

Each edge is a link that can be constructed
(i.e., a feasible link).

Communication Network Problems

« |s the network connected?
= Can we communicate between every pair of
cities?
* Find the components.
e Want to construct smallest number of
feasible links so that resulting network is
connected.

Cycles And Connectedness

Removal of an edge that is on a cycle does nottaffe
connectedness.

Cycles And Connectedness

Connected subgraph with all vertices and

minimum number of edges has no cycles.

7’)“ Tree ﬂf

e Connected graph that has no cycles.
e nvertex connected graph with1 edges.

Spanning Tree

e Subgraph that includes all vertices of the
original graph.
e Subgraph is a tree.

= |If original graph has vertices, the spanning
tree has vertices anch-1 edges.

Minimum Cost Spanning Tree

e Tree cost is sum of edge weights/costs.

A Spanning Tree

@
GE\E) 24

e

Spanning tree cost51

Minimum Cost Spanning Tree

Spanning tree cost41

A Wireless Broadcast Tree

Source= 1, weights = needed power.
Cost=4+8+5+6+7+8+3=41

Graph Representation

< Adjacency Matrix

< Adjacency Lists
= Linked Adjacency Lists
= Array Adjacency Lists

Adjacency Matrix

¢ 0/1 n x nmatrix, wheren =# of vertices
o A(i,)) = 1iff (i,)) is an edge

|1 2 3 4 5
110 1 0 1 O
211 0 0 0 1
3]0 0 0 0 1
411 0 0 0 1
5/]0 1110

Adjacency Matrix Properties

[1 2 3 45
@ 1]l6.1 0 1 0

®/ 2|1 ¢ 0 0 1
3l0 0 @ 0 1

\@ 411 0 0 0 1
510 1 1 190

eDiagonal entries are zero.

*Adjacency matrix of an undirected graph is
symmetric.

=A(i,)) = A(j,i) for alli andi.

Adjacency Matrix (Digraph)

® |
'
\G)*) 0

eDiagonal entries are zero.

a b wN PRk
O O Fr Of-
R O O O o|N
P O OO OoO|w
O O O O R+
O Fr O Fr Ojul

*Adjacency matrix of a digraph need not be
symmetric.

Adjacency Matrix

» n? bits of space

< For an undirected graph, may store only
lower or upper triangle (exclude diagonal).
= (n-1)n/2bits

* O(n)time to find vertex degree and/or
vertices adjacent to a given vertex.

Adjacency Lists

< Adjacency list for vertexis a linear list of
vertices adjacent from vertéx

* An array ofn adjacency lists.

aList[1] = (2,4)
alList[2] = (1,5)
aList[3] = (5)

aList[4] = (5,1)

alList[5] = (2,4,3)

Linked Adjacency Lists

e Each adjacency list is a chain.

aList[1 (21

[2] 5l

[3]

[4] |
aList[5] v el |

Array Length=n
of chain nodes 2e(undirected graph)

of chain node = e (digraph

Array Adjacency Lists

< Each adjacency list is an array list.

@ aList[1
o 8
[3]

® s
— aList[5

Array Length=n
of list elements: 2e(undirected graph)

of list elemeni = e(digraph

Weighted Graphs

< Cost adjacency matrix.
= C(i,J)) = cost of edgéi,j)

» Adjacency lists=> each list element is a
pair (adjacent vertex, edge weight)

Number Of Java Classes Needed

* Graph representations
= Adjacency Matrix
= Adjacency Lists
»Linked Adjacency Lists
»Array Adjacency Lists
= 3representations
* Graph types
= Directed and undirected.
= Weighted and unweighted.
= 2 x 2 = 4graph types
e 3 x4 =12)ava classes

Abstract Class Graph

packagedataStructures;
importjava.util.*;

public abstract clagSraph
{

/I ADT methods come here

/I create an iterator for vertex i
public abstract lterator iterator(int i);

/I implementation independent methods come here

}

Abstract Methods Of Graph

/I ADT methods

public abstract intertices();

public abstract inedges();

public abstract booleagxistsEdgd(t i, int j);
public abstract voigputEdgeQbjecttheEdge);
public abstract voidemoveEdgeft i, int j);
public abstract intlegreeifit i);

public abstract ininDegreeipnt i);

public abstract inbutDegred(it i);

