
Graph Operations And
Representation

Sample Graph Problems

• Path problems.

• Connectedness problems.

• Spanning tree problems.

Path Finding

Path between 1 and 8.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 20.

Another Path Between 1 and 8

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 28.

Example Of No Path

No path between 2 and 9.

2
3

8
101

4
5

9
11

6
7

Connected Graph

• Undirected graph.

• There is a path between every pair of
vertices.

Example Of Not Connected

2
3

8
101

4
5

9
11

6
7

Connected Graph Example

2
3

8
101

4
5

9
11

6
7

Connected Components

2
3

8
101

4
5

9
11

6
7

Connected Component

• A maximal subgraph that is connected.
� Cannot add vertices and edges from original

graph and retain connectedness.

• A connected graph has exactly 1
component.

Not A Component

2
3

8
101

4
5

9
11

6
7

Communication Network

Each edge is a link that can be constructed
(i.e., a feasible link).

2
3

8
101

4
5

9
11

6
7

Communication Network Problems

• Is the network connected?
� Can we communicate between every pair of

cities?

• Find the components.

• Want to construct smallest number of
feasible links so that resulting network is
connected.

Cycles And Connectedness

2
3

8
101

4
5

9
11

6
7

Removal of an edge that is on a cycle does not affect
connectedness.

Cycles And Connectedness

2
3

8
101

4
5

9
11

6
7

Connected subgraph with all vertices and
minimum number of edges has no cycles.

Tree

• Connected graph that has no cycles.

• n vertex connected graph with n-1 edges.

Spanning Tree

• Subgraph that includes all vertices of the
original graph.

• Subgraph is a tree.
� If original graph has n vertices, the spanning

tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

• Tree cost is sum of edge weights/costs.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

A Spanning Tree

Spanning tree cost = 51.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

Minimum Cost Spanning Tree

Spanning tree cost = 41.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

A Wireless Broadcast Tree

Source = 1, weights = needed power.
Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

Graph Representation

• Adjacency Matrix

• Adjacency Lists
� Linked Adjacency Lists

� Array Adjacency Lists

Adjacency Matrix

• 0/1 n x n matrix, where n = # of vertices
• A(i,j) = 1 iff (i,j) is an edge

2
3

1

4
5

1 2 3 4 5
1
2
3
4
5

0 1 0 1 0
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 1 1 0

Adjacency Matrix Properties

2
3

1

4
5

1 2 3 4 5
1
2
3
4
5

0 1 0 1 0
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 1 1 0

•Diagonal entries are zero.

•Adjacency matrix of an undirected graph is
symmetric.

�A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

2
3

1

4
5

1 2 3 4 5
1
2
3
4
5

0 0 0 1 0
1 0 0 0 1
0 0 0 0 0
0 0 0 0 1
0 1 1 0 0

•Diagonal entries are zero.

•Adjacency matrix of a digraph need not be
symmetric.

Adjacency Matrix

• n2 bits of space

• For an undirected graph, may store only
lower or upper triangle (exclude diagonal).
� (n-1)n/2bits

• O(n) time to find vertex degree and/or
vertices adjacent to a given vertex.

Adjacency Lists

• Adjacency list for vertexi is a linear list of
vertices adjacent from vertexi.

• An array ofn adjacency lists.

2
3

1

4
5

aList[1] = (2,4)

aList[2] = (1,5)

aList[3] = (5)

aList[4] = (5,1)

aList[5] = (2,4,3)

Linked Adjacency Lists

• Each adjacency list is a chain.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length= n

of chain nodes= 2e (undirected graph)

of chain nodes= e (digraph)

Array Adjacency Lists

• Each adjacency list is an array list.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length= n

of list elements= 2e (undirected graph)

of list elements= e (digraph)

Weighted Graphs

• Cost adjacency matrix.
� C(i,j) = cost of edge (i,j)

• Adjacency lists => each list element is a
pair (adjacent vertex, edge weight)

Number Of Java Classes Needed
• Graph representations

� Adjacency Matrix

� Adjacency Lists

¾Linked Adjacency Lists

¾Array Adjacency Lists

� 3 representations

• Graph types
� Directed and undirected.

� Weighted and unweighted.

� 2 x 2 = 4 graph types

• 3 x 4 = 12Java classes

Abstract Class Graph
packagedataStructures;

import java.util.*;

public abstract classGraph

{

// ADT methods come here

// create an iterator for vertex i

public abstract Iterator iterator(int i);

// implementation independent methods come here

}

Abstract Methods Of Graph

// ADT methods

public abstract intvertices();

public abstract intedges();

public abstract booleanexistsEdge(int i, int j);

public abstract voidputEdge(ObjecttheEdge);

public abstract voidremoveEdge(int i, int j);

public abstract intdegree(int i);

public abstract intinDegree(int i);

public abstract intoutDegree(int i);

