Graph Operations And
~ Representation
: @

Sample Graph Problems

« Path problems.
» Connectedness problems.
« Spanning tree problems.

Path Finding

Path between and8.
@%@\j_g
NN
o

Path length i20.

Another Path Between 1 and 8

A
\@\S@\Sf‘y

7

Path length i28.

Example Of No Path

@/@ ? 2 e
E\@\ify

No path betweef and9.

Connected Graph

« Undirected graph.

* There is a path between every pair of
vertices.

Example Of Not Connected

@/@ ? 2 e
E\@\ify

Connected Graph Example

BN

®

Connected Components
P
o 9

NS

Connected Component

« A maximal subgraph that is connected.

= Cannot add vertices and edges from original
graph and retain connectedness.

» A connected graph has exacily
component.

Not A Component

Communication Network

@/@ ? 2 e
@\‘g‘

Each edge is a link that can be constructed
(i.e., a feasible link).

Communication Network Problems

* |s the network connected?
= Can we communicate between every pair of
cities?
» Find the components.
* Want to construct smallest number of
feasible links so that resulting network is
connected.

Cycles And Connectedness

LRREVAN
"/

Removal of an edge that is on a cycle does nottaffe
connectedness.

Cycles And Connectedness

N
AR

®

Connected subgraph with all vertices and
minimum number of edges has no cycles.

7’)“ Tree ﬁf

» Connected graph that has no cycles.
* nvertex connected graph withl edges.

Spanning Tree

« Subgraph that includes all vertices of the
original graph.
« Subgraph is a tree.

= |f original graph has vertices, the spanning
tree has vertices anah-1 edges.

Minimum Cost Spanning Tree

@
@g\>@24
" ;

* Tree cost is sum of edge weights/costs.

A Spanning Tree

Spanning tree cost51.

Minimum Cost Spanning Tree

Spanning tree cost41

A Wireless Broadcast Tree

f0
VLS,

Source= 1, weights = needed power.
Cost=4+8+5+6+7+8+3=41

Graph Representation

« Adjacency Matrix

« Adjacency Lists
» Linked Adjacency Lists
= Array Adjacency Lists

Adjacency Matrix

e 0/1 n x nmatrix, wheren =# of vertices
o A(l,)) = 1iff (i) is an edge

1 2 3 4 5
@ 1o 1 0 1 0

@/ 21 0 0 0 1
3lo 0 0 01

\@— 411 0 0 0 1
510 1 1 1 0

Adjacency Matrix Properties

1 2 3 4 5
@ 1le.1 0 1 0

@/ 211 ¢.0 0 1
3o 0 0 0 1

@— 411 0 0 0 1
50 1 1 10

*Diagonal entries are zero.

*Adjacency matrix of an undirected graph is
symmetric.

=A(i,j) = A(,i) for alli and].

Adjacency Matrix (Digraph)

1 2 3 4 5
@ 1o 0 0 1 0

@»/ 211 0 0 0 1
310 0 0 0 O

\@—> 410 0 0 0 1
510 1 1 0 0

*Diagonal entries are zero.

*Adjacency matrix of a digraph need not be
symmetric.

Adjacency Matrix

* n? bits of space

» For an undirected graph, may store only
lower or upper triangle (exclude diagonal).
* (n-1)n/2bits

* O(n)time to find vertex degree and/or
vertices adjacent to a given vertex.

Adjacency Lists

» Adjacency list for vertexis a linear list of
vertices adjacent from vertex

* An array ofn adjacency lists.
aList[1] = (2,4)
2 aList[2] = (1,5)

@/ aList[3] = (5)
\@ aList[4] = (5,1)

aList[5] = (2,4,3)

Linked Adjacency Lists

e Each adjacency list is a chain.
©) aList[1]
o g
[3]
ho s
— alList[5]

Array Length=n
of chain nodes 2e(undirected graph)

of chain node = e (digraph

Array Adjacency Lists

» Each adjacency list is an array list.
©) aList[1]
o 5
[3]
® 5
— aList[5]
Array Length=n

of list elements: 2e(undirected graph)

of list element = e (digraph

Weighted Graphs

« Cost adjacency matrix.
= C(i,J) = cost of edgéi,))

» Adjacency lists=> each list element is a
pair (adjacent vertex, edge weight)

Number Of Java Classes Needed

» Graph representations
= Adjacency Matrix
= Adjacency Lists
»Linked Adjacency Lists
»Array Adjacency Lists
= 3representations
» Graph types
» Directed and undirected.
= Weighted and unweighted.
= 2 X 2 = 4graph types
e 3 x4 =12)ava classes

Abstract Class Graph

packagedataStructures;
importjava.util.*;

public abstract clagsraph
{

/Il ADT methods come here

/I create an iterator for vertex i
public abstract Iterator iterator(int i);

/l implementation independent methods come here

}

Abstract Methods Of Graph

/[ADT methods

public abstract invertices();

public abstract inedges();

public abstract booleasxistsEdga(t i, int j);
public abstract voigputEdgeQbjecttheEdge);
public abstract voidemoveEdge(t i, int j);
public abstract intlegreeifit i);

public abstract ininDegreeipt i);

public abstract inbutDegreeft i);

