
Binary Search Trees

• Dictionary Operations:
� get(key)
� put(key, value)
� remove(key)

• Additional operations:
� ascend()
� get(index)(indexed binary search tree)
� remove(index) (indexed binary search tree)

Complexity Of Dictionary Operations
get(), put() and remove()

Data StructureWorst Case Expected

Hash Table O(n) O(1)

Binary Search
Tree

O(n) O(log n)

Balanced
Binary Search
Tree

O(log n) O(log n)

n is number of elements in dictionary

Complexity Of Other Operations
ascend(), get(index), remove(index)

Data Structureascend get and
remove

Hash Table O(D + n log n)O(D + n log n)

Indexed BST O(n) O(n)

Indexed
Balanced BST

O(n) O(log n)

D is number of buckets

Definition Of Binary Search Tree

• A binary tree.

• Each node has a (key, value)pair.

• For every node x, all keys in the left
subtree of x are smaller than that in x.

• For every node x, all keys in the right
subtree of x are greater than that in x.



Example Binary Search Tree
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Only keys are shown.

The Operation ascend()
20

10

6

2 8

15

40

30

25

Do an inorder traversal.O(n) time.

The Operation get()
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Complexity isO(height) = O(n), where n is 
number of nodes/elements.

The Operation put()
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Put a pair whose key is 35.

35



The Operation put()

Put a pair whose key is 7.
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The Operation put()
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Put a pair whose key is 18.
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The Operation put()
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Complexity of put() is O(height).
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The Operation remove()

Three cases:

� Element is in a leaf.

� Element is in a degree 1 node.

� Element is in a degree 2 node.



Remove From A Leaf

Remove a leaf element. key = 7
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Remove From A Leaf (contd.)

Remove a leaf element. key = 35
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Remove From A Degree 1 Node

Remove from a degree 1 node. key = 40
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Remove From A Degree 1 Node (contd.)

Remove from a degree 1 node. key = 15
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Remove From A Degree 2 Node

Remove from a degree 2 node. key = 10
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Remove From A Degree 2 Node
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Replace with largest key in left subtree (or 
smallest in right subtree).
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Remove From A Degree 2 Node
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Replace with largest key in left subtree (or 
smallest in right subtree).
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Remove From A Degree 2 Node
20

8

6

2 8

15

40

30

25

Replace with largest key in left subtree (or 
smallest in right subtree).

35

7

18



Remove From A Degree 2 Node
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Largest key must be in a leaf or degree 1 node.
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Another Remove From A Degree 2 Node

Remove from a degree 2 node. key = 20
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Remove From A Degree 2 Node
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Replace with largest in left subtree.
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Remove From A Degree 2 Node
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Replace with largest in left subtree.
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Remove From A Degree 2 Node
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Replace with largest in left subtree.
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Remove From A Degree 2 Node
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Complexity is O(height).
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Indexed Binary Search Tree

• Binary search tree.

• Each node has an additional field.
� leftSize =number of nodes in its left subtree

Example Indexed Binary Search Tree
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leftSizevalues are in red



leftSize And Rank

Rank of an element is its position in inorder
(inorder = ascending key order).

[2,6,7,8,10,15,18,20,25,30,35,40]

rank(2) = 0

rank(15) = 5

rank(20) = 7

leftSize(x) = rank(x)with respect to elements in
subtree rooted at x

leftSize And Rank
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sorted list= [2,6,7,8,10,15,18,20,25,30,35,40]

get(index) And remove(index)
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sorted list= [2,6,7,8,10,15,18,20,25,30,35,40]

get(index) And remove(index)

• if index = x.leftSize desired element is 
x.element

• if index < x.leftSize desired element is
index’th element in left subtree of x

• if index > x.leftSize desired element is 
(index - x.leftSize-1)’th element in right
subtree of x



Applications
(Complexities Are For Balanced Trees)

Best-fit bin packing in O(n log n) time.

Representing a linear list so that get(index), 
add(index, element), and remove(index)
run in O(log(list size)) time (uses an 
indexed binary tree, not indexed binary 
search tree).

Can’t use hash tables for either of these 
applications.  

Linear List As Indexed Binary Tree
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list = [a,b,c,d,e,f,g,h,i,j,k,l]

add(5,’m’)
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add(5,’m’)
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list = [a,b,c,d,e, m,f,g,h,i,j,k,l]
find node with element4 (e)



add(5,’m’)
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list = [a,b,c,d,e, m,f,g,h,i,j,k,l]
find node with element4 (e) 

add(5,’m’)

h

e

b

a d

f

l

j

i k

c

g

0

0 1

1

4

0

0

7

0 0

1

3

add m as right child of e; former right
subtree of ebecomes right subtree of m
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add(5,’m’)
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add m as leftmost node in right subtree
of e

m

add(5,’m’)

• Other possibilities exist.

• Must update someleftSizevalues on path 
from root to new node.

• Complexity is O(height).


