B Binary Search Trees_
@ ®

 Dictionary Operations:
= get(key)
» put(key, value)
= remove(key)
« Additional operations:
= ascend()
= get(index)(indexed binary search tree)
» remove(index)indexed binary search tree)

Complexity Of Dictionary Operations
get(), put() and remove()

Data Structur|Worst Case Expected

Hash Table | O(n) 0(1)
Binary SearchO(n) O(log n)
Tree

Balanced O(log n) O(log n)
Binary Search

Tree

nis number of elements in dictionary




Complexity Of Other Operations
ascend(), get(index), remove(index)

Data Structur|ascend get and
remove
Hash Table 'O(D +nlogn O(D + nlogn

Indexed BST | O(n) O(n)
Indexed O(n) O(log n)
Balanced BS

D is number of buckets

Definition Of Binary Search Tree

A binary tree.
Each node has(&ey, value)pair.

For every node, all keys in the left
subtree ofx are smaller than that in

For every node, all keys in the right
subtree ofk are greater than that in




Example Binary Search Tree

/

/
©) 15)

/
@ ® €

Only keys are shown.

The Operation ascend()

/

/
©) 15)

/
@ ® €

Do an inorder traversaD(n) time.




The Operation get()

/
©
/
(5) i) /
@ & (2
Complexity isO(height) = O(n)wheren is
number of nodes/elements.

The Operation put()

10)

e\g

. /
@ ® €

Put a pair whose key &5.




The Operation put()

Put a pair whose key i5

The Operation put()

Put a pair whose key is3.




The Operation put()

/
.
b ©6e
@

Complexity ofput() is O(height)

The Operation remove()

Three cases:
= Elementis in a leaf.
= Element is in a degree 1 node.

= Element is in a degree 2 node.




Remove From A Leaf

/
e
d¢o © & o
@

Remove a leaf element. key7

Remove From A Leaf (contd.)

/
.
do © 86
@

Remove a leaf element. key35




Remove From A Degree 1 Node

Remove from a degrelenode. key= 40

Remove From A Degree 1 Node (contd.)

/

@ @® © » @
Q)

Remove from a degrelenode. key= 15




Remove From A Degree 2 Node

o«
5 @ @
/K

ONNO ®@ &
@

Remove from a degréenode. key= 10

Remove From A Degree 2 Node

A
. @ /

ONNO ®@ &
@

Replace with largest key in left subtree (or
smallest in right subtree).




Remove From A Degree 2 Node

A
“ @ /

@ ®@ &

@

Replace with largest key in left subtree (or
smallest in right subtree).

Remove From A Degree 2 Node

A
“ @ /

@ ®@ &

@

Replace with largest key in left subtree (or
smallest in right subtree).




Remove From A Degree 2 Node

/
.
@ @@
@

Largest key must be in a leaf or degig®de.

Another Remove From A Degree 2 NO(

/
.
b ©6e
@

Remove from a degréenode. key= 20




Remove From A Degree 2 Node

/‘
'S,
® ® ® & @
®

Replace with largest in left subtree.

Remove From A Degree 2 Node

/ ‘
@ e
@

Replace with largest in left subtree.




Remove From A Degree 2 Node
(18
/
%S
@ ® @3 (=
@

Replace with largest in left subtree.

Remove From A Degree 2 Node

Complexity isO(height)




Indexed Binary Search Tree

» Binary search tree.

 Each node has an additional field.
= |eftSize =number of nodes in its left subtree

Example Indexed Binary Search Trg

‘®
4/
0 1
5 s s

leftSizevalues are imed

\J




leftSize And Rank

Rank of an element is its position in inorder
(inorder = ascending key order).

[2,6,7,8,10,15,18,20,25,30,35,40]
rank(2) =0
rank(15) = 5
rank(20) = 7

leftSize(x) = rank(xwith respect to elements in
subtree rooted at

leftSize And Rank

sorted list=[2,6,7,8,10,15,18,20,25,30,35,40]




get(index) And remove(index)

‘®
/
0 L
)
0/ 0

®@ &

sorted list=[2,6,7,8,10,15,18,20,25,30,35,40]

get(index) And remove(index)

e if index = x.leftSizedesired element is
x.element

e if iIndex < x.leftSizedesired element is
indexXth element in left subtree of

e If index > x.leftSizedesired element is
(index - x.leftSize-1jh element in right
subtree ofk




Applications
(Complexities Are For Balanced Trees)

Best-fit bin packing irO(n log n)time.

Representing a linear list so thget(index)
add(index, elementandremove(index)
run in O(log(list size))time (uses an
indexed binary tree, not indexed binary
search tree)

Can'’t use hash tables for either of these
applications.

Linear List As Indexed Binary Tree

4/\®
kf @/®®0

list = [a,b,c,d,e,f,g,h,ij,k,I]




list = [a,b,c,d,em,f,g,h,i,j,k,l]
find node with element ()




add(5,'m’)
7
(n)
4 / 3
o
AT

1

()
0 1
@ @
©

list = [a,b,c,d,em,f,g,h,i,j,k,l]
find node with element (e)

add(5,'m’)
®

4/\@3
1 0 L
N 00/%
C’@ﬁ@@‘)
©

addm as right child ofe; former right
subtree ot becomes right subtree of




add(5,'m’)
®

4/\@3
1 0 L
N OO/QK
O@ﬁ@@‘)
&

addm as leftmost node in right subtree
of e

add(5,'m’)

» Other possibilities exist.

« Must update somieftSizevalues on path
from root to new node.

o Complexity isO(height)




