
Initializing A Max Heap

input array = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

8

4

7

6 7

8 9

3

710

1

11

5

2

Initializing A Max Heap

Start at rightmost array position that has a child.

8

4

7

6 7

8 9

3

710

1

11

5

2

Index is n/2.

Initializing A Max Heap

Move to next lower array position.

8

4

7

6 7

8 9

3

710

1

5

11

2

Initializing A Max Heap

8

4

7

6 7

8 9

3

710

1

5

11

2



Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2



Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

Find a home for 2.

Initializing A Max Heap

8

9

7

6 3

8 4

7

75

1

11

Find a home for 2.

10

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

Done, move to next lower array position.

10

5

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

10

5

Find home for 1.



11

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Done.

1



Time Complexity

87

6 3

4

7

710

11

5

2

9

8

1

Height of heap = h.

Number of subtrees with root at level j is <= 2 j-1.

Time for each subtree isO(h-j+1).

Complexity

Time for level j subtrees is <= 2j-1(h-j+1) = t(j).

Total time is t(1) + t(2) + … + t(h-1) = O(n).

Leftist Trees

Linked binary tree.

Can do everything a heap can do and in the 
same asymptotic complexity.

Can meld two leftist tree priority queues in 
O(log n)time.

Extended Binary Trees

Start with any binary tree and add an 
external node wherever there is an 
empty subtree.

Result is an extended binary tree.



A Binary Tree An Extended Binary Tree

number of external nodes is n+1

The Function s()

For any node x in an extended binary tree, 
let s(x) be the length of a shortest path 
from x to an external node in the subtree
rooted at x.

s()Values Example



s()Values Example

0 0 0 0

0 0

0 0

0

0

1 1 1

2 1 1

2 1

2

Properties Of s()

If x is an external node, then s(x) = 0.

Otherwise,
s(x) = min {s(leftChild(x)),

s(rightChild(x))} + 1

Height Biased Leftist Trees

A binary tree is a (height biased) leftist tree
iff for every internal node x, 
s(leftChild(x)) >= s(rightChild(x))

A Leftist Tree

0 0 0 0

0 0

0 0

0

0

1 1 1

2 1 1

2 1

2



Leftist Trees--Property 1

In a leftist tree, the rightmost path is a 
shortest root to external node path and 
the length of this path is s(root).

A Leftist Tree

0 0 0 0

0 0

0 0

0

0

1 1 1

2 1 1

2 1

2

Length of rightmost path is 2.

Leftist Trees—Property 2

The number of internal nodes is at least
2s(root)- 1

Because levels 1 through s(root)have no 
external nodes.

So, s(root) <= log(n+1)

A Leftist Tree

0 0 0 0

0 0

0 0

0

0

1 1 1

2 1 1

2 1

2

Levels 1 and 2 have no external nodes.



Leftist Trees—Property 3

Length of rightmost path is O(log n), where 
n is the number of nodes in a leftist tree.

Follows from Properties 1 and 2.

Leftist Trees As Priority Queues

Min leftist tree … leftist tree that is a min tree.

Used as a min priority queue.

Max leftist tree … leftist tree that is a max tree.

Used as a max priority queue.

A Min Leftist Tree

8 6 9

6 8 5

4 3

2

Some Min Leftist Tree Operations

put()

remove()

meld()

initialize()

put() andremove()usemeld().



Put Operation

put(7)

8 6 9

6 8 5

4 3

2

Put Operation

put(7)

8 6 9

6 8 5

4 3

2

Create a single node min leftist tree. 7

Put Operation

put(7)

8 6 9

6 8 5

4 3

2

Create a single node min leftist tree.

Meld the two min leftist trees.

7

Remove Min

8 6 9

6 8 5

4 3

2



Remove Min

8 6 9

6 8 5

4 3

2

Remove the root.

Remove Min

8 6 9

6 8 5

4 3

2

Remove the root.

Meld the two subtrees.

Meld Two Min Leftist Trees

8 6 9

6 8 5

4 3

6

Traverse only the rightmost paths so as to get 
logarithmic performance.

Meld Two Min Leftist Trees

8 6 9

6 8 5

4 3

6

Meld right subtree of tree with smaller root and 
all of other tree.



Meld Two Min Leftist Trees

8 6 9

6 8 5

4 3

6

Meld right subtree of tree with smaller root and all of 
other tree.

Meld Two Min Leftist Trees

8 6

6 8

4 6

Meld right subtree of tree with smaller root and all of 
other tree.

Meld Two Min Leftist Trees

8 6

Meld right subtree of tree with smaller root and all of 
other tree.

Right subtree of 6 is empty. So, result of melding right 
subtree of tree with smaller root and other tree is the 
other tree.

Meld Two Min Leftist Trees

Swap left and right subtree if s(left) < s(right).

Make melded subtree right subtree of smaller root.

8 6

6

8

6

8



Meld Two Min Leftist Trees

8 6

6 6

4

8
8 6

6

4
6

8

Make melded subtree right subtree of smaller root.

Swap left and right subtree if s(left) < s(right).

Meld Two Min Leftist Trees

9

5

3

Swap left and right subtree if s(left) < s(right).

Make melded subtree right subtree of smaller root.

8 6

6 6

4

8

Meld Two Min Leftist Trees

9

5

3

8 6

6 6

4

8

Initializing In O(n) Time
• create n single node min leftist trees 

and place them in a FIFO queue

• repeatedly remove two min leftist trees 
from the FIFO queue, meld them, and 
put the resulting min leftist tree into the 
FIFO queue

• the process terminates when only 1 min 
leftist tree remains in the FIFO queue

• analysis is the same as for heap 
initialization 


