- Union-Find Problem
@

®
« Given asefl, 2, ..., n}of nelements.
* Initially each element is in a different set.
= {1}, {2}, ..., {n}

» An intermixed sequence of union and find
operations is performed.

A union operation combines two sets into one.

= Each of then elements is in exactly one set at any
time.

A find operation identifies the set that contains
a particular element.

Using Arrays And Chains

» See Section 7.7 for applications as well as for
solutions that use arrays and chains.

» Best time complexity obtained in Section 7.7 is

O(n + u log u + fywhereu andf are,
respectively, the number of union and find
operations that are done.

» Using a tree (not a binary tree) to represent a
set, the time complexity becomes almost
O(n + f) (assuming at least’2 union
operations).

A Set As A Tree

e S={2,4,5,9, 11, 13, 30}
 Some possible tree representations:

i

Result Of A Find Operation

« find(i) is to identify the set that contains elemen

* In most applications of the union-find problem,
user does not provide set identifiers.

* The requirement is thénd(i) andfind(j) return
the same value iff elementandj are in the same

Set-

—+

the

Dt.

find(i) will return the element that is in the tree ro

Strategy For find(i)

<&
@ (8

)
& CEVRNEY

« Start at the node that represents elemant
climb up the tree until the root is reached.

e Return the element in the root.

e To climb the tree, each node must have a parent
pointer.

Trees With Parent Pointers

a eee 0
2 4 i

@ B ©® ® B

Possible Node Structure

* Use nodes that have two fieladsementand
parent

= Use an arrayable[] such thatable[i]is a
pointer to the node whose element is

* To do afind(i) operation, start at the node given
by table[i] and follow parent fields until a node
whose parent field is null is reached.

= Return element in this root node.

Example

Wids

(Only some table entries are shown.)

table[]

Better Representation

» Use an integer arrgyarent[|such that
parent[i]is the element that is the parent of
element. (13

&
5 @ W

parent[] [_|2]9] [1313 || |4 |'S [0 | |
0 5 10 15

Union Operation

 union(i,))
* | andj are the roots of two different treess |.

e To unite the trees, make one tree a subtree
of the other.
= parent[j] =i

Union Example

(7)
6, 996
(5)
99 é @@:@@@

* union(7,13)

The Find Method

public intfind(int theElement)
{
while (parent[theElement] != 0)
theElement = parent[theElement]; // move up
returntheElement;

The Union Method

public voidunion(nt rootA, int rootB)
{parent[rootB] = rootA;}

Time Complexity Of union(}

+ O(1)

Time Complexity of find()

* Tree height may equal number of elements i
tree.
* union(2,1), union(3,2), union(4,3), union(5,4)...

So complexity iO(u).

u Unions and f Find Operatio

O(u + uf) = O(uf)

Time to initializeparent[i] = Ofor all i is
O(n).

Total time isO(n + uf),

Worse than solution of Section 7.7!

Back to the drawing board. &

Smart Union Strategies
(13

Y
99 @@®@

e union(7,13)

* Which tree should become a subtree of the othen?

Height Rule

* Make tree with smaller height a subtree of the
other tree.

» Break ties arbitrarily.

@
o e@e ee@e

(2)
(1) union(7,13) o,

@@@

Weight Rule

* Make tree with fewer number of elements a subtree
of the other tree.

« Break ties arbitrarily. (7)
A %
6' (8 (3 (6)

o 9@ 0

@0 (6 19 @2

(1) union(7,13)

Implementation

* Root of each tree must record either its
height or the number of elements in the tree.

 When a union is done using the height rule,
the height increases only when two trees of
equal height are united.

* When the weight rule is used, the weight of
the new tree is the sum of the weights of the
trees that are united.

Height Of A Tree

» Suppose we start with single element trees
and perform unions using either the height
or the weight rule.

* The height of a tree with elements is at
mostfloor (log,p) + 1

 Proof is by induction op. See text.

Sprucing Up The Find Method

(7]
13
? %5 ® 3 @ &
f g é 130 o)
& 20 15 19 @2
fL a, b, c, d, e, fandg are subtrees
e find(1)

» Do additional work to make future finds easier.

Path Compaction
* Make all nodes on find path point to tree root.

e find(1)

Makes two passes up the tree.

Path Splitting

* Nodes on find path point to former grandparent.

a, b, c, d, e, fandg are subtrees

Makes only one pass up the tree.

Path Halving

» Parent pointer in every other node on find path i$

changed to former grandparent.

e find(1) (7)
13
T o8 ® 3 @ &
f gé 139 o)
o 20 19 (19 @
[) a, b, c, d, e, fandg are subtrees

Changes half as many pointers.

>4

Time Complexity

* Ackermann’s function.
= A®lj)=2,i=1landj>=1
= A®i,j) = A(-1,2), i >= 2andj = 1
= Ai,)) = AG-1,AG,j-1)), i,] >= 2
* |nverse of Ackermann’s function.
= alpha(p,q) = min{z>=1 | A(z, p/q) > leg}, p>=q>=1

Time Complexity

Ackermann’s function grows very rapidly as
andj are increased.

= A(2,4) = 25536

The inverse function grows very slowly.

= alpha(p,q) < 5 until q =21

= A(4,1) = A(2,16) >>>> A(2,4)

In the analysis of the union-find problemis the
numbern, of elementsp = n + f and u >= n/2

For all practical purposes|pha(p,q) <5

Time Complexity

Theorem 12.2Tarjan and Van Leeuwen]

Let T(f,u) be the maximum time required to process any
intermixed sequence 6finds andu unions. Assume
thatu >=n/2

a*(n + fxalpha(f+n, n)) <= T(f,u) <= b*(n + f*alpha(f+n, n))

whereaandb are constants.

These bounds apply when we start with singletos aed
use either the weight or height rule for unions ang
one of the path compression methods for a find.

