
Dictionaries

• Collection of pairs.
� (key, element)

� Pairs have different keys.

• Operations.
� get(theKey)

� put(theKey, theElement)

� remove(theKey)

Application

• Collection of student records in this class.
� (key, element) =(student name, linear list of assignment and

exam scores)

� All keys are distinct.

• Get the element whose key is John Adams.

• Update the element whose key is Diana Ross.
� put() implemented as update when there is already a pair with

the given key.

� remove()followed by put().

Dictionary With Duplicates

• Keys are not required to be distinct.
• Word dictionary.

� Pairs are of the form (word, meaning).
� May have two or more entries for the same word.

• (bolt, a threaded pin)
• (bolt, a crash of thunder)
• (bolt, to shoot forth suddenly)
• (bolt, a gulp)
• (bolt, a standard roll of cloth)
• etc.

Represent As A Linear List

• L = (e0, e1, e2, e3, …, en-1)

• Each ei is a pair(key, element).

• 5-pair dictionary D = (a, b, c, d, e).
� a = (aKey, aElement), b = (bKey, bElement),

etc.

• Array or linked representation.

Array Representation
a b c d e

• get(theKey)

� O(size) time

• put(theKey, theElement)

� O(size)time to verify duplicate, O(1) to add at right
end.

• remove(theKey)

� O(size) time.

Sorted Array
A B C D E

• elements are in ascending order of key.

• get(theKey)

� O(log size) time

• put(theKey, theElement)

� O(log size)time to verify duplicate, O(size)to add.

• remove(theKey)

� O(size) time.

Unsorted Chain

• get(theKey)

� O(size) time

• put(theKey, theElement)

� O(size)time to verify duplicate, O(1) to add at left end.

• remove(theKey)

� O(size) time.

a b c d e
null

firstNode
Sorted Chain

• Elements are in ascending order of Key.

• get(theKey)

� O(size) time

• put(theKey, theElement)

� O(size)time to verify duplicate, O(1) to put at proper
place.

A B C D E
null

firstNode

Sorted Chain

• Elements are in ascending order of Key.

A B C D E
null

firstNode

• remove(theKey)

� O(size) time.

Skip Lists

• Worst-case time for get, put, and removeis
O(size).

• Expected time is O(log size).

• We’ll skip skip lists.

Hash Tables

• Worst-case time for get, put, and removeis
O(size).

• Expected time is O(1).

Ideal Hashing
• Uses a 1D array (or table) table[0:b-1].

� Each position of this array is a bucket.
� A bucket can normally hold only one dictionary pair.

• Uses a hash function f that converts each keyk into
an index in the range[0, b-1].
� f(k) is the home bucketfor key k.

• Every dictionary pair (key, element)is stored in its
home bucket table[f[key]].

[0] [1] [2] [3] [4] [5] [6] [7]

Ideal Hashing Example

• Pairs are: (22,a), (33,c), (3,d), (73,e), (85,f).

• Hash table istable[0:7], b = 8.

• Hash function iskey/11.

• Pairs are stored in table as below:

(85,f)(22,a) (33,c)(3,d) (73,e)

• get, put, andremovetakeO(1) time.

What Can Go Wrong?

• Where does (26,g)go?
• Keys that have the same home bucket are synonyms.

� 22and 26are synonyms with respect to the hash function that is in
use.

• The home bucket for (26,g)is already occupied.

[0] [1] [2] [3] [4] [5] [6] [7]

(85,f)(22,a) (33,c)(3,d) (73,e)

What Can Go Wrong?

• A collisionoccurs when the home bucket for a new
pair is occupied by a pair with a different key.

• An overflow occurs when there is no space in the
home bucket for the new pair.

• When a bucket can hold only one pair, collisions
and overflows occur together.

• Need a method to handle overflows.

(85,f)(22,a) (33,c)(3,d) (73,e)

Hash Table Issues

• Choice of hash function.

• Overflow handling method.

• Size (number of buckets) of hash table.

Hash Functions

• Two parts:
� Convert key into an integer in case the key is

not an integer.

• Done by the method hashCode().

• Map an integer into a home bucket.
� f(k) is an integer in the range [0, b-1], where b

is the number of buckets in the table.

String To Integer

• Each Java character is 2 bytes long.

• An int is 4 bytes.

• A 2 character string s may be converted into
a unique 4 byte int using the code:

int answer = s.charAt(0);

answer = (answer << 16) + s.charAt(1);

• Strings that are longer than 2 characters do
not have a uniqueint representation.

String To Nonnegative Integer

public static intinteger(String s)
{

int length = s.length();
// number of characters in s

int answer = 0;
if (length % 2 == 1)
{ // length is odd

answer = s.charAt(length - 1);
length--;

}

String To Nonnegative Integer

// length is now even

for (int i = 0; i < length; i += 2)

{ // do two characters at a time

answer += s.charAt(i);

answer += ((int) s.charAt(i + 1)) << 16;

}

return(answer < 0) ? -answer : answer;

}

Map Into A Home Bucket

• Most common method is by division.

homeBucket =

Math.abs(theKey.hashCode()) % divisor;

• divisor equals number of bucketsb.

• 0 <= homeBucket < divisor = b

[0] [1] [2] [3] [4] [5] [6] [7]

(85,f)(22,a) (33,c)(3,d) (73,e)

Uniform Hash Function

•Let keySpacebe the set of all possible keys.

•A uniform hash function maps the keys in
keySpaceinto buckets such that
approximately the same number of keys get
mapped into each bucket.

[0] [1] [2] [3] [4] [5] [6] [7]

(85,f)(22,a) (33,c)(3,d) (73,e)

Uniform Hash Function

• Equivalently, the probability that a randomly
selected key has bucket i as its home bucket is 1/b,
0 <= i < b.

• A uniform hash function minimizes the likelihood
of an overflow when keys are selected at random.

[0] [1] [2] [3] [4] [5] [6] [7]

(85,f)(22,a) (33,c)(3,d) (73,e)

Hashing By Division

• keySpace =all ints.

• For every b, the number of ints that get mapped
(hashed) into bucket i is approximately 232/b.

• Therefore, the division method results in a
uniform hash function when keySpace =all ints.

• In practice, keys tend to be correlated.

• So, the choice of the divisor b affects the
distribution of home buckets.

Selecting The Divisor

• Because of this correlation, applications tend to
have a bias towards keys that map into odd
integers (or into even ones).

• When the divisor is an even number, odd integers
hash into odd home buckets and even integers
into even home buckets.
� 20%14 = 6, 30%14 = 2, 8%14 = 8
� 15%14 = 1, 3%14 = 3, 23%14 = 9

• The bias in the keys results in a bias toward
either the odd or even home buckets.

Selecting The Divisor

• When the divisor is an odd number, odd (even)
integers may hash into any home.
� 20%15 = 5, 30%15 = 0, 8%15 = 8

� 15%15 = 0, 3%15 = 3, 23%15 = 8

• The bias in the keys does not result in a bias
toward either the odd or even home buckets.

• Better chance of uniformly distributed home
buckets.

• So do not use an even divisor.

Selecting The Divisor

• Similar biased distribution of home buckets is
seen, in practice, when the divisor is a multiple
of prime numbers such as 3, 5, 7, …

• The effect of each prime divisor p of b decreases
asp gets larger.

• Ideally, chooseb so that it is a prime number.

• Alternatively, choose b so that it has no prime
factor smaller than 20.

Java.util.HashTable

• Simply uses a divisor that is an odd number.

• This simplifies implementation because we must
be able to resize the hash table as more pairs are
put into the dictionary.
� Array doubling, for example, requires you to go from

a 1D array tablewhose length is b (which is odd) to
an array whose length is 2b+1(which is also odd).

