Dictionaries

» Collection of pairs.
= (key, element)
= Pairs have different keys.
» Operations.
» get(theKey)
= put(theKey, theElement)
* remove(theKey)

Application

» Collection of student records in this class.

= (key, element) £student name, linear list of assignment and
exam scores)

= All keys are distinct.
» Get the element whose keyJishn Adams

* Update the element whose keyisina Ross

= put()implemented as update when there is already a pair w
the given key.

= remove()followed byput().

Dictionary With Duplicates

» Keys are not required to be distinct.

» Word dictionary.

= Pairs are of the forrfword, meaning)

= May have two or more entries for the same word.
(bolt, a threaded pin)
(bolt, a crash of thunder)
(bolt, to shoot forth suddenly)
(bolt, a gulp)
(bolt, a standard roll of cloth)
etc.

Represent As A Linear List

L=(& € & & ..., &)
Eache is a pair(key, element)
5-pair dictionaryD = (a, b, c, d, e)

» a = (aKey, aElementb = (bKey, bElement),
etc.

Array or linked representation.

Array Representation

* get(theKey)
= O(size)time
* put(theKey, theElement)

= O(size)time to verify duplicateQ(1)to add at right
end.

- remove(theKey)

= O(size)time.

Sorted Array
(Aelefolel [T [TTTT]]]

» elements are in ascending order of key.
* get(theKey)
" O(log sizelttime
* put(theKey, theElement)
" O(log sizeltime to verify duplicateQ(size)to add.
- remove(theKey)

= O(size)time.

% Unsorted Chain ™

firstN ode\A —

a b C d e

* get(theKey)
= O(size)time
* put(theKey, theElement)
= O(size)time to verify duplicateQ(1)to add at left end.

- remove(theKey)

= O(size)time.

% Sorted Chain ™

firstN ode\A —

A B C D E

* Elements are in ascending order of Key.
* get(theKey)

= O(size)time
* put(theKey, theElement)

= O(size)time to verify duplicateQ(1)to put at proper
place.

% Sorted Chain ™

firstNode\A

null

A

B C D E

* Elements are in ascending order of Key.

» remove(theKey)

= O(size)time.

Skip Lists

» Worst-case time foget, put, andremoveis

O(size).

» Expected time i©(log size).
o We'll skip skip lists

Hash Tables

« Worst-case time foget, put, andremoveis
O(size).
» Expected time i©(1).

ldeal Hashing

e Uses a 1D array (or tableggble[0:b-1]
= Each position of this array istaicket
= A bucket can normally hold only one dictionary pair
e Uses a hash functidrthat converts each keyinto
an index in the rang@, b-1].
= f(k) is thehome bucketor keyk.

» Every dictionary paitkey, elementjs stored in its
home bucketable[f[key]].

|deal Hashing Example

Pairs are(22,a), (33,c), (3,d), (73,e), (85.)
Hash table isable[0:7] b =&

Hash function i&key/11

Pairs are stored in table as below:

(3,d) (22,a)] (33,0) (73,e)(85,)
o [[B [Bl .l (7]
e get, put, andremovetakeO(1) time.

What Can Go Wrong?

(3,d) (22,3)] (33,0) (73,€)(85,1)
o [[2 @ [5 [6 (7]

* Where doe$26,9)go?

» Keys that have the same home buckesgnanyms

= 22 and26 are synonyms with respect to the hash function that
use.

» The home bucket fa26,g)is already occupied.

isin

What Can Go Wrong?

(3,d) (22,a)| (33,c) (73,e)(85,f)

A collision occurs when the home bucket for a ne

pair is occupied by a pair with a different key.

An overflow occurs when there is no space in the
home bucket for the new pair.

When a bucket can hold only one pair, collisions
and overflows occur together.

Need a method to handle overflows.

Hash Table Issues

« Choice of hash function.
« Overflow handling method.
» Size (number of buckets) of hash table.

Hash Functions

e Two parts:

= Convert key into an integer in case the key is
not an integer.

Done by the methodashCode().
* Map an integer into a home bucket.

= f(k) is an integer in the range, b-1], whereb
is the number of buckets in the table.

String To Integer

Each Java characterddytes long.
An intis 4 bytes.

A 2 character string may be converted into
a uniqued byteint using the code:

int answer = s.charAt(0);
answer = (answer << 16) + s.charAt(1);

Strings that are longer th&tharacters do
not have a uniquiamt representation.

String To Nonnegative Integer

public static intinteger(String s)
{
int length = s.length();
/I number of characters in s
int answer = 0;
if (length % 2 ==1)
{/l length is odd
answer = s.charAt(length - 1);
length--;
}

String To Nonnegative Integer

// length is now even
for (inti1=0;i<length; i+=2)
{/l do two characters at a time
answer += s.charAt(i);
answer += ((int) s.charAt(i + 1)) << 16;
}

return(answer < 0) ? -answer : answer,

Map Into A Home Bucket
(3,d) (22,a)| (33,c) (73,e)(85,f)
(N Y R P B N 73 R N (4 I v

e Most common method is by division.

homeBucket =
Math.abs(theKey.hashCode()) % divisor;

 divisorequals number of buckelts

* 0 <= homeBucket < divisor = b

Uniform Hash Function
(3,d) (22,a)| (33,c) (73,e)(85,f)
o] [[[8 [4 B 6 (7

oLet keySpacde the set of all possible keys.

*A uniform hash functiomaps the keys in
keySpaceanto buckets such that
approximately the same number of keys get
mapped into each bucket.

Uniform Hash Function

(3,d) (22,a)| (33,c) (73,e)(85,f)

o [y 2 [B [©“ [B 6l 7]

» Equivalently, the probability that a randomly
selected key has buckeds its home bucket isb,
O<=i<h

A uniform hash function minimizes the likelihog
of an overflow when keys are selected at randol

m.

Hashing By Division

keySpace =ll ints.

For everyb, the number oints that get mapped
(hashed) into buckets approximately:?/b.

Therefore, the division method results in a
uniform hash function whelkeySpace =all ints.

In practice, keys tend to be correlated.

So, the choice of the divisbraffects the
distribution of home buckets.

Selecting The Divisor

» Because of this correlation, applications tend to
have a bias towards keys that map into odd
integers (or into even ones).

* When the divisor is an even number, odd integers
hash into odd home buckets and even integers
into even home buckets.

" 20%14 = 630%14 = 28%14 =8
= 15%14 = 13%14 = 323%14 =9

* The bias in the keys results in a bias toward
either the odd or even home buckets.

Selecting The Divisor

* When the divisor is an odd number, odd (even)
integers may hash into any home.
 20%15 = 530%15 =08%15 =8
" 15%15 =03%15 =323%15=8

* The bias in the keys does not result in a bias
toward either the odd or even home buckets.

» Better chance of uniformly distributed home
buckets.

* So do not use an even divisor.

Selecting The Divisor

Similar biased distribution of home buckets is
seen, in practice, when the divisor is a multiple
of prime numbers such &s5, 7, ...

The effect of each prime divisprof b decreases
asp gets larger.

Ideally, choosé so that it is a prime number.

Alternatively, choosé so that it has no prime
factor smaller thagO.

Java.util.HashTablewa

Simply uses a divisor that is an odd number.

This simplifies implementation because we mu
be able to resize the hash table as more pairs
put into the dictionary.

= Array doubling, for example, requires you to ganfiro

a 1D arraytablewhose length i (which is odd) to
an array whose length Zb+1 (which is also odd).

St
Aare

