- Queues
@ ®

Linear list.

« One end is calletont.

Other end is calleckar.

Additions are done at thhearonly.

« Removals are made from tfrent only.

Bus Stop Queue

g:f?)‘:ﬁ ﬁ g}?(" ? %)

front rear

Bus Stop Queue

Bus ¥~ o

front rear

Bus Stop Queue

Stop |

X & 0

front rear

Bus Stop Queue

The Interface Queue

public interfaceQueue

{
public booleansEmpty();
public ObjectgetFrontEelement();
public ObjectgetRearEelement();
public voidput(Object theObject);
public Objectremove();

Reuvisit Of Stack Applications

« Applications in which the stack cannot be
replaced with a queue.
= Parentheses matching.
= Towers of Hanoi.
= Switchbox routing.
= Method invocation and return.
= Try-catch-throw implementation.
» Application in which the stack may be
replaced with a queue.
= Rat in a maze.
Results in finding shortest path to exit.

Wire Routing

Lee’s Wire Router

[start pin

[] endpin

Label all reachable squargsinit from start.

Lee’s Wire Router

[start pin

[] endpin

Label all reachable unlabeled squatesits
from start.

Lee’s Wire Router

[start pin

[] endpin

NN
N[N
N

Label all reachable unlabeled squasesits
from start.

Lee’s Wire Router

[start pin

[] endpin

WIN[N
WOIN[= N
N

Label all reachable unlabeled squatesits
from start.

Lee’s Wire Router

[start pin

[] endpin

N N

EY(SN]\S) [l [\S] (8]
) (SE1 NS [l [NS) (SR B

Label all reachable unlabeled squaiesits
from start.

Lee’s Wire Router

5
[start pin 4[5
3 3
d pi 2/ 2 u
[] endpin 3 AR u
22 [
3|4]3[4]|5
A 45
5] [5
[T]

Label all reachable unlabeled squadesits
from start.

Lee’s Wire Router

6]5[6

[start pin 4[5

[] endpin 3 BB u
A B B]
314]3[4]5]6
A 4]5]6
516/ 5[6
6

End pin reached. Traceback.

Lee’s Wire Router

6]5[6

[start pin 4[5

[] endpin mE u
A B B]
314]3[4]5]6
A 4]5]6
516/ 5[6
6

End pin reached. Traceback.

Derive From ArrayLinearList
[afelefd e [TTTTTTTT]]
01 2 3456

»when front is left end of list and rear is rightlen
Queue.isEmpty() => super.isEmpty()

Derive From ArrayLinearList
[efdlefofd [[[TT[TTT]]
01 2 3456

= when rear is left end of list and front is rightden
Queue.isEmpty() => super.isEmpty()

—0O(1)time —0O(1)time

getFrontElement() => get(0) getFrontElement() => get(size() - 1)
—0O(1)time —0O(1)time

getRearElement() => get(size() - 1) getRearElement() => get(0)
—0O(1)time —0O(1)time

put(theObject)=> add(size(), theObject) put(theObject)=> add(0, theObject)
—0O(1)time — O(sizeltime

remove()=>remove(0) remove()=>remove(size() - 1)
— O(sizeltime — O(1)time

Derive From ArrayLinearList

= to perform each opertion iD(1) time (excluding
array doubling), we need a customized array
representation.

Derive From ExtendedChain

firstNode lastNode
5 EE
front rear

» when front is left end of list and rear is rightlen
* Queue.isEmpty(>> super.isEmpty()
—O(D)time
* getFrontElement(¥> get(0)
— O(1)time

Derive From ExtendedChain

Derive From ExtendedChain

firstNode lastNode firstNode lastNode
| || | | || |
0 0 0 0
frlnt rear rjar front
" getRearElement(> getlast() ... new method » when front is right end of list and rear is lefden
—O(1)time .)
* put(theObject)y> append(theObject) * Queue.isEmpty(y> super.iSEmpty()
—o(1)time - O()time
« remove()=> remove(0) * getFrontElement(¥> getLast()
— O(1)time — O(D)time

Derive From ExtendedChain
firstNode lastNode

?@@

rear front
« getRearElement§> get(0)

—O(1)time

« put(theObject)=> add(0, theObject)
—O(1)time

* remove()=> remove(size-1)

— O(sizetime

Custom Linked Code

» Develop a linked class f@pueuefrom scratch to
get better preformance than obtainable by
deriving fromExtendedChain.

Custom Array Queue

e Use a 1D arrayueue
queue[] [EIETEEE

« Circular view of array.
[2] 3]

(1] 4

[0] (5]

Custom Array Queue

» Possible configuration with elements.

Custom Array Queue

» Another possible configuration with
elements.

Custom Array Queue

» Use integer variablgsont andrear.

— frontis one position counterclockwise from
first element

— reargives position of last element

Add An Element Add An Element

* Moverearone clockwise. * Moverearone clockwise.
e Then put intaqueue[rear]

Remove An Element Remove An Element

* Move front one clockwise. * Move front one clockwise.
e Then extract frongueue[front]

Moving rear Clockwise

o reart+;
if (rear = = queue.lengtigar = 0;

rear

4

e rear = (rear + 1) % queue.length;

Empty That Queue
2] (3]

Empty That Queue
2] (3]

real

(1] 4

front

Empty That Queue
2] (3]

real

(1 4

front

Empty That Queue

4

* When a series of removes causes the queue to
become emptyfront = rear

* When a queue is constructed, it is empty.
» So initializefront = rear = 0

A Full Tank Please

A Full Tank Please

A Full Tank Please

A Full Tank Please

* When a series of adds causes the queue to
become fullfront = rear

* So we cannot distinguish between a full
gueue and an empty queue!

* Remedies.

= Don't let the queue get full.

When the addition of an element will cause the guelbe
full, increase array size.

This is what the text does.

= Define a boolean variablastOperationlsPut
Following eaclput set this variable toue
Following eachremoveset tofalse
Queue is empty ifffront == rear) && !lastOperationlsPut
Queue is full iff(front == rear) && lastOperationIsPut

« Remedies (continued).

= Define an integer variabkeze
Following eactputdosize++
Following eactremovedo size--
Queue is empty iffsize == 0)
Queue is full iff(size == queue.length)
= Performance is slightly better when first strategy
used.

