
Queues

• Linear list.

• One end is called front.

• Other end is called rear.

• Additions are done at the rearonly. 

• Removals are made from the front only.
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The Interface Queue

public interfaceQueue

{   

public booleanisEmpty();

public ObjectgetFrontEelement();

public ObjectgetRearEelement();

public voidput(Object theObject);

public Objectremove();

}



Revisit Of Stack Applications
• Applications in which the stack cannot be 

replaced with a queue.
� Parentheses matching.
� Towers of Hanoi.
� Switchbox routing.
� Method invocation and return.
� Try-catch-throw implementation.

• Application in which the stack may be 
replaced with a queue.
� Rat in a maze.

• Results in finding shortest path to exit.

Wire Routing



Lee’s Wire Router
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Label all reachable squares 1 unit from start.
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Lee’s Wire Router
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Lee’s Wire Router

start pin
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Lee’s Wire Router

start pin

end pin

End pin reached. Traceback.
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Derive From ArrayLinearList

¾when front is left end of list and rear is right end
• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => get(0)

– O(1) time

• getRearElement() => get(size() - 1)

– O(1) time

• put(theObject) => add(size(), theObject)

– O(1) time

• remove() => remove(0)

– O(size) time
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Derive From ArrayLinearList

� when rear is left end of list and front is right end
• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => get(size() - 1)

– O(1) time

• getRearElement() => get(0)

– O(1) time

• put(theObject) => add(0, theObject)

– O(size) time

• remove() => remove(size() - 1)

– O(1) time
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Derive From ArrayLinearList
� to perform each opertion in O(1) time (excluding 

array doubling), we need a customized array 
representation.

Derive From  ExtendedChain

a b c d e
null

firstNode lastNode

front rear

¾ when front is left end of list and rear is right end

• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => get(0)

– O(1) time



Derive From  ExtendedChain

a b c d e
null

firstNode lastNode

front rear
• getRearElement() => getLast() … new method

– O(1) time

• put(theObject) => append(theObject)

– O(1) time

• remove() => remove(0)

– O(1) time

Derive From  ExtendedChain

e d c b a
null

firstNode lastNode

rear front

¾ when front is right end of list and rear is left end

• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => getLast()

– O(1) time



Derive From  ExtendedChain

a b c d e
null

firstNode lastNode

rear front
• getRearElement() => get(0)

– O(1) time

• put(theObject) => add(0, theObject)

– O(1) time

• remove() => remove(size-1)

– O(size) time

Custom Linked Code

• Develop a linked class for Queuefrom scratch to 
get better preformance than obtainable by 
deriving fromExtendedChain.



Custom Array Queue

• Use a 1D array queue.

queue[]

• Circular view of array.
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Custom Array Queue

• Possible configuration with 3 elements.
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Custom Array Queue

• Another possible configuration with 3 
elements.
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Custom Array Queue

• Use integer variables front and rear.
– front is one position counterclockwise from 

first element

– rear gives position of last element
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Add An Element
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• Move rear one clockwise.

Add An Element

• Move rear one clockwise.
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• Then put into queue[rear].
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Remove An Element
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• Move front one clockwise.

Remove An Element
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• Move front one clockwise.

• Then extract from queue[front].



Moving rear Clockwise
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• rear++;

if (rear = = queue.length)rear = 0;

• rear = (rear + 1) % queue.length;

Empty That Queue
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Empty That Queue
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Empty That Queue

• When a series of removes causes the queue to 
become empty, front = rear.

• When a queue is constructed, it is empty.
• So initialize front = rear = 0.
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• When a series of adds causes the queue to 
become full, front = rear.

• So we cannot distinguish between a full 
queue and an empty queue!

Ouch!!!!!
• Remedies.

� Don’t let the queue get full.
• When the addition of an element will cause the queue to be 

full, increase array size.

• This is what the text does.

� Define a boolean variablelastOperationIsPut.
• Following each put set this variable to true.

• Following each remove set to false.

• Queue is empty iff(front == rear) && !lastOperationIsPut

• Queue is full iff(front == rear) && lastOperationIsPut



Ouch!!!!!
• Remedies (continued).

� Define an integer variable size.
• Following each put do size++.

• Following each remove do size--.

• Queue is empty iff(size == 0)

• Queue is full iff(size == queue.length) 

� Performance is slightly better when first strategy is 
used.


