
Queues

• Linear list.

• One end is called front.

• Other end is called rear.

• Additions are done at the rearonly.

• Removals are made from the front only.

Bus Stop Queue

Bus
Stop

front
rear

rear rear rear rear

Bus Stop Queue

Bus
Stop

front
rear

rear rear

Bus Stop Queue

Bus
Stop

front
rear

rear

Bus Stop Queue

Bus
Stop

front
rear

rear

The Interface Queue

public interfaceQueue

{

public booleanisEmpty();

public ObjectgetFrontEelement();

public ObjectgetRearEelement();

public voidput(Object theObject);

public Objectremove();

}

Revisit Of Stack Applications
• Applications in which the stack cannot be

replaced with a queue.
� Parentheses matching.
� Towers of Hanoi.
� Switchbox routing.
� Method invocation and return.
� Try-catch-throw implementation.

• Application in which the stack may be
replaced with a queue.
� Rat in a maze.

• Results in finding shortest path to exit.

Wire Routing

Lee’s Wire Router

start pin

end pin

Label all reachable squares 1 unit from start.

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 2 units
from start.

11

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 3 units
from start.

11
2

22

2
2

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 4 units
from start.

11
2

22

2
2

3

33

3

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 5 units
from start.

11
2

22

2
2

3

33

3
4

4
4

4

4

Lee’s Wire Router

start pin

end pin

Label all reachable unlabeled squares 6 units
from start.

11
2

22

2
2

3

33

3
4

4
4

4

4
5

5

5 5
5

5

Lee’s Wire Router

start pin

end pin

End pin reached. Traceback.

11
2

22

2
2

3

33

3
4

4
4

4

4
5

5

5 5
5

5
6

6
6

66
6

66

Lee’s Wire Router

start pin

end pin

4

End pin reached. Traceback.

11
2

22

2
2

3

33

3
4

4
4

4

4
5

5

5 5
5

5
6

6
6

66
6

66

3 5
2
1

Derive From ArrayLinearList

¾when front is left end of list and rear is right end
• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => get(0)

– O(1) time

• getRearElement() => get(size() - 1)

– O(1) time

• put(theObject) => add(size(), theObject)

– O(1) time

• remove() => remove(0)

– O(size) time

0 1 2 3 4 5 6

a b c d e

Derive From ArrayLinearList

� when rear is left end of list and front is right end
• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => get(size() - 1)

– O(1) time

• getRearElement() => get(0)

– O(1) time

• put(theObject) => add(0, theObject)

– O(size) time

• remove() => remove(size() - 1)

– O(1) time

0 1 2 3 4 5 6

e d c b a

Derive From ArrayLinearList
� to perform each opertion in O(1) time (excluding

array doubling), we need a customized array
representation.

Derive From ExtendedChain

a b c d e
null

firstNode lastNode

front rear

¾ when front is left end of list and rear is right end

• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => get(0)

– O(1) time

Derive From ExtendedChain

a b c d e
null

firstNode lastNode

front rear
• getRearElement() => getLast() … new method

– O(1) time

• put(theObject) => append(theObject)

– O(1) time

• remove() => remove(0)

– O(1) time

Derive From ExtendedChain

e d c b a
null

firstNode lastNode

rear front

¾ when front is right end of list and rear is left end

• Queue.isEmpty() => super.isEmpty()

– O(1)time

• getFrontElement() => getLast()

– O(1) time

Derive From ExtendedChain

a b c d e
null

firstNode lastNode

rear front
• getRearElement() => get(0)

– O(1) time

• put(theObject) => add(0, theObject)

– O(1) time

• remove() => remove(size-1)

– O(size) time

Custom Linked Code

• Develop a linked class for Queuefrom scratch to
get better preformance than obtainable by
deriving fromExtendedChain.

Custom Array Queue

• Use a 1D array queue.

queue[]

• Circular view of array.

[0]

[1]

[2] [3]

[4]

[5]

Custom Array Queue

• Possible configuration with 3 elements.

[0]

[1]

[2] [3]

[4]

[5]

A B

C

Custom Array Queue

• Another possible configuration with 3
elements.

[0]

[1]

[2] [3]

[4]

[5]
AB

C

Custom Array Queue

• Use integer variables front and rear.
– front is one position counterclockwise from

first element

– rear gives position of last element

[0]

[1]

[2] [3]

[4]

[5]

A B

C
front rear

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

Add An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C
front rear

• Move rear one clockwise.

Add An Element

• Move rear one clockwise.

[0]

[1]

[2] [3]

[4]

[5]

A B

C
front

rear

• Then put into queue[rear].

D

Remove An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C
front rear

• Move front one clockwise.

Remove An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front

rear

• Move front one clockwise.

• Then extract from queue[front].

Moving rear Clockwise

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front rear

• rear++;

if (rear = = queue.length)rear = 0;

• rear = (rear + 1) % queue.length;

Empty That Queue

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

Empty That Queue

[0]

[1]

[2] [3]

[4]

[5]
B

C

front

rear

Empty That Queue

[0]

[1]

[2] [3]

[4]

[5]

C

front

rear

Empty That Queue

• When a series of removes causes the queue to
become empty, front = rear.

• When a queue is constructed, it is empty.
• So initialize front = rear = 0.

[0]

[1]

[2] [3]

[4]

[5]front

rear

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear
D

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear
D E

A Full Tank Please

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

rear

D E

F

• When a series of adds causes the queue to
become full, front = rear.

• So we cannot distinguish between a full
queue and an empty queue!

Ouch!!!!!
• Remedies.

� Don’t let the queue get full.
• When the addition of an element will cause the queue to be

full, increase array size.

• This is what the text does.

� Define a boolean variablelastOperationIsPut.
• Following each put set this variable to true.

• Following each remove set to false.

• Queue is empty iff(front == rear) && !lastOperationIsPut

• Queue is full iff(front == rear) && lastOperationIsPut

Ouch!!!!!
• Remedies (continued).

� Define an integer variable size.
• Following each put do size++.

• Following each remove do size--.

• Queue is empty iff(size == 0)

• Queue is full iff(size == queue.length)

� Performance is slightly better when first strategy is
used.

