~ Queues
@ ®

Linear list.

One end is calle@ont.

Other end is callec:ar.

Additions are done at threaronly.
Removals are made from tfrent only.

Bus Stop Queue

Busﬂf\& ﬁ -
Stop ?) at%s

front rear

Bus Stop Queue

2 § ¥
rear

Bus Stop Queue

Stop |

Bus Stop Queue

The Interface Queue

public interfaceQueue

{
public booleansEmpty();
public ObjectgetFrontEelement();
public ObjectgetRearEelement();
public voidput(Object theObject);
public Objectremove();

Revisit Of Stack Applications

» Applications in which the stack cannot be
replaced with a queue.

= Parentheses matching.
= Towers of Hanoi.
= Switchbox routing.
= Method invocation and return.
» Try-catch-throw implementation.
» Application in which the stack may be
replaced with a queue.

= Rat in a maze.
Results in finding shortest path to exit.

Wire Routing

Lee’s Wire Router

O start pin
[] end pin

Label all reachable squargsinit from start.

Lee’s Wire Router

O start pin
[] end pin

Label all reachable unlabeled squatesits
from start.

Lee’s Wire Router

O start pin
[] end pin

Label all reachable unlabeled squatesits
from start.

Lee’s Wire Router

O start pin
[] end pin

Label all reachable unlabeled squatesits
from start.

Lee’s Wire Router

O start pin
[] end pin

Label all reachable unlabeled squasesits
from start.

Lee’s Wire Router

O start pin
[] end pin

Label all reachable unlabeled squatesits
from start.

O start pin
[] end pin

Lee’s Wire Router

End pin reached. Traceback.

O start pin
[] end pin

Lee’s Wire Router

End pin reached. Traceback.

Derive From ArrayLinearList

al bl c| d e

0 1 2 34 56

»when front is left end of list and rear is rightlen

Queue.isEmpty() => super.isEmpty()
— O(1)time

getFrontElement() => get(0)
— O(1)time

getRearElement() => get(size() - 1)
—O(1)time

put(theObject)=> add(size(), theObiject)
— O(1)time

remove()=>remove(0)
— O(sizeltime

Derive From ArrayLinearList

el d| c| b|] a

0 1 2 34 56

= when rear is left end of list and front is rightlen
Queue.isEmpty() => super.isEmpty()
— O(1)time
getFrontElement() => get(size() - 1)
— O(1)time
getRearElement() => get(0)
— O(1)time
put(theObject)=> add(0, theObject)
— O(size)time
remove()=>remove(size() - 1)
— O(1)time

Derive From ArrayLinearList

= to perform each opertion i@(1) time (excluding
array doubling), we need a customized array
representation.

Derive From ExtendedChain

firstNode lastNode
null
a b (o d e
front rear

» when front is left end of list and rear is rightlen
* Queue.isEmpty(>> super.isEmpty()
—0O(1)time
* getFrontElement(F> get(0)
— O(1)time

Derive From ExtendedChain
firstNode lastNode

null
a b (o d e

| |

front rear
* getRearElementf> getLast() ... new method

— O(1)time

* put(theObject> append(theObject)
— O(1)time

* remove()=>remove(0)
— O(1)time

Derive From ExtendedChain

firstNode lastNode
null
e d (o b a
rear front

» when front is right end of list and rear is lefden
* Queue.isEmpty(>> super.isEmpty()
—0O(1)time
* getFrontElement(> getLast()
— O(1)time

Derive From ExtendedChain

firstNode lastNode
null
a b c d e
rear front
* getRearElement§> get(0)
— O(1)time
* put(theObjecty> add(0, theObject)
— O(1)time

* remove()=> remove(size-1)

— O(size)time

Custom Linked Code

* Develop a linked class f@pueuefrom scratch to
get better preformance than obtainable by
deriving fromExtendedChain.

Custom Array Queue

 Use a 1D arragueue

queue[] [T

 Circular view of array.
2] [3]

[1] [4]

[0] [5]

Custom Array Queue

» Possible configuration with elements.

Custom Array Queue

» Another possible configuration with
elements.

Custom Array Queue

» Use integer variablesont andrear.

— frontis one position counterclockwise from
first element

— reargives position of last element

Add An Element

 Moverearone clockwise.

Add An Element

 Moverearone clockwise.
e Then put intaqueue[rear]

Remove An Element

 Move front one clockwise.

Remove An Element

* Move front one clockwise.
* Then extract fronqueue([front]

Moving rear Clockwise

o rear++;
if (rear = = queue.lengthipar = O;

[2] [3]

rear

[4]

[0] [5]

» rear = (rear + 1) % queue.length;

Empty That Queue

front

[4]

Empty That Queue

[4]

front

Empty That Queue

[4]

Empty That Queue

[4]

* When a series of removes causes the queue to
become emptyfyont = rear

* When a queue is constructed, it is empty.
e So initializefront =rear =0

A Full Tank Please

o~
D

A Full Tank Please

front

[4]

A Full Tank Please
[2] [3] rear

front

[1] [4]

A Full Tank Please
[
».

[5]

front

[4]

[1]
rear

[0]

 When a series of adds causes the queue to
become fullfront = rear

e So we cannot distinguish between a full
gueue and an empty queue!

» Remedies.

= Don't let the queue get full.

When the addition of an element will cause the queue to
full, increase array size.

This is what the text does.

= Define a boolean variablaestOperationlsPut
Following eachput set this variable torue
Following eachremoveset tofalse
Queue is empty ifffront == rear) && !lastOperationisPut
Queue is full iff(front == rear) && lastOperationlsPut

e

* Remedies (continued).

= Define an integer variabkeze
Following eaclputdo size++
Following eachremovedo size--
Queue is empty iffsize == 0)
Queue is full iff(size == queue.length)
= Performance is slightly better when first strategyy
used.

