Q : Data Structures . ﬁ

data object
set or collection of instances
integer = {0, +1, -1, +2, -2, +3, -3, ...}

daysOfWeek = {S,M,T,W,Th,F,Sa}

Data Object

instances may or may not be related

myDataObject = {apple, chair, 2, 5.2&d, green, Jack}

&) Data Structureu

Data object +
relationships that exist among instances
and elements that comprise an instance

Among instances of integer
369 <370
280 +4 =284

&) Data Structureu

Among elements that comprise an instance

369

3 is more significant than 6

3 is immediately to the left of 6
9 is immediately to the right of 6

| Data Structure &

The relationships are usually specified by
specifying operations on one or more
instances.

add, subtract, predecessor, multiply

a Linear (or Ordered) Lista

instances are of the form
(& & &, ..., §)

whereg denotes a list element
n >= 0is finite
list size isn




% Linear Lists ®
L= (eov €,6,6;, ..., 311)

relationships

g, is the zero'th (or front) element
e, is the last element

g immediately precedes,

Linear List Examples/Instances

Students in COP3530 =
(Jack, Jill, Abe, Henry, Mary, ..., Judy)

Exams in COP3530 =
(examl, exam2, exam3)

Days of Week S, M, T, W, Th, F, Sa)

Months =(Jan, Feb, Mar, Apr, ..., Nov, Dec)

Linear List Operations—size()

determine list size
L = (a,b,c,de)

size=5

Linear List Operations—qget(thelnde

get element with given index

L = (ab,c,de)
get(0) = a
get(2) = ¢
get(4) = e
get(-1) = error
get(9) = error

X

Linear List Operations—
indexOf(theElement)

determine the index of an element

L = (ab,db,a)
indexOf(d) = 2
indexOf(a) = 0
indexOf(2) = -1

Linear List Operations—
remove(thelndex)

remove and return element with given
index

L = (ab,c,defg)
remove(2) returnsc

andL becomega,b,d,e f,g)

index ofd,ef, andg decrease b¥




Linear List Operations—
remove(thelndex)

remove and return element with given
index

L = (ab,c,d,ef,g)

remove(-1) => error
remove(20) => error

Linear List Operations—
add(thelndex, theElement)

add an element so that the new element has
a specified index

L = (ab,c,d,ef,0)

add(0,h) => L = (h,a,b,c,d,ef,g)
index ofa,b,c,d,ef, andg increase byl

Linear List Operations—
add(thelndex, theElement)

L = (ab,c,d,ef,g)

add(2,h) => L = (a,b,h,c,d,ef,g)
index ofc,d,ef, andg increase byl

add(10,h) => error
add(-6,h) => error

Data Structure Specification

ULanguage independent
»Abstract Data Type
UJava
»Interface
»Abstract Class

Linear List Abstract Data Type

AbstractDataTypéinearList
{
instances
ordered finite collections of zero or more elements
operations
isEmpty(): return true iff the list is empty, false otherwise
size(): return the list size (i.e., number of elementhmltst)
get(index): return thendexth element of the list
indexO f(x): return the index of the first occurrence xin
the list, return -1 ik is not in the list
remove(index): remove and return thedexth element,
elements with higher index have their index reduzngl
add(thelndex, x): insert x as thendexth element, elements
with thelndex>= index have their index increased by 1
output(): output the list elements from left to right

}

Linear List as Java Interface

An interface may include constants
and abstract methods (i.e., methods
for which no implementation is
provided).




Linear List as Java Interface

public interfaceLinearList

{
public booleansEmpty();
public intsize();
public Objectget(int index);
public intindexOf(Object elem);
public Objectremove(int index);
public voidadd(int index, Object obj);
public StringtoString();

Implementing An Interface

public classArrayLinearListimplementd.inearList

{

/I code for all LinearList methods must be provided here

}

Linear List As An Abstract Class

An abstract class may include
constants, variables, abstract
methods, and nonabstract methods.

Linear List As Java Abstract Class

public abstract cladsinearListAsAbstractClass
{

public abstract booleasEmpty();

public abstract insize();

public abstract Objedet(int index);

public abstract inindexOf(Object theElement);

public abstract Objeeemove(int index);

public abstract voiadd(int index,

Object theElement);
public abstract StringpString();

Extending A Java Class

public classArrayLinearList
extendd.inearListAsAbstractClass
{
/I code for all abstract classes must come here

}

Implementing Many Interfaces

public classMyIntegerimplementOperable, Zero,
CloneableObject
{
/I code for all methods of Operable, Zero,
/I and CloneableObject must be provided

}




AI Extending Many Classeé|

NOT PERMITTED IN JAVA

A Java class may implement as many
interfaces as it wants but can extend at most
1 class.

Data Structures In Text

All but 1 of our data structures are specified as Java
interfaces.

Exception isGraph in Chapter 17.
Java specifies all of its data structures as interfaces.

java.util.List




