
1

Data Structures

data object

set or collection of instances

integer = {0, +1, -1, +2, -2, +3, -3, …}

daysOfWeek = {S,M,T,W,Th,F,Sa}

Data Object

instances may or may not be related

myDataObject = {apple, chair, 2, 5.2,red, green, Jack}

2

Data Structure

Data object +
relationships that exist among instances

and elements that comprise an instance

Among instances of integer

369 < 370

280 + 4 = 284

Data Structure

Among elements that comprise an instance

369

3 is more significant than 6

3 is immediately to the left of 6

9 is immediately to the right of 6

3

The relationships are usually specified by
specifying operations on one or more

instances.

add, subtract, predecessor, multiply

Data Structure

Linear (or Ordered) Lists

instances are of the form

(e0, e1, e2, …, en-1)

where ei denotes a list element

n >= 0is finite

list size isn

4

Linear Lists

L = (e0, e1, e2, e3, …, en-1)

relationships

e0 is the zero’th (or front) element

en-1 is the last element

ei immediately precedes ei+1

Linear List Examples/Instances

Students in COP3530 =
(Jack, Jill, Abe, Henry, Mary, …, Judy)

Exams in COP3530 =
(exam1, exam2, exam3)

Days of Week = (S, M, T, W, Th, F, Sa)

Months = (Jan, Feb, Mar, Apr, …, Nov, Dec)

5

Linear List Operations—size()

determine list size

L = (a,b,c,d,e)

size = 5

Linear List Operations—get(theIndex)

get element with given index

L = (a,b,c,d,e)

get(0) = a

get(2) = c

get(4) = e

get(-1) = error

get(9) = error

6

Linear List Operations—
indexOf(theElement)

determine the index of an element

L = (a,b,d,b,a)

indexOf(d) = 2

indexOf(a) = 0

indexOf(z) = -1

Linear List Operations—
remove(theIndex)

remove and return element with given
index

L = (a,b,c,d,e,f,g)

remove(2) returns c

and L becomes (a,b,d,e,f,g)

index ofd,e,f, andg decrease by1

7

Linear List Operations—
remove(theIndex)

remove and return element with given
index

L = (a,b,c,d,e,f,g)

remove(-1) => error
remove(20) => error

Linear List Operations—
add(theIndex, theElement)

add an element so that the new element has
a specified index

L = (a,b,c,d,e,f,g)

add(0,h) => L = (h,a,b,c,d,e,f,g)

index ofa,b,c,d,e,f, andg increase by1

8

Linear List Operations—
add(theIndex, theElement)

L = (a,b,c,d,e,f,g)

add(2,h) => L = (a,b,h,c,d,e,f,g)

index ofc,d,e,f, andg increase by1

add(10,h) => error

add(-6,h) => error

Data Structure Specification

�Language independent
¾Abstract Data Type

�Java
¾Interface

¾Abstract Class

9

Linear List Abstract Data Type
AbstractDataTypeLinearList

{

instances

ordered finite collections of zero or more elements

operations

isEmpty(): return true iff the list is empty, false otherwise

size(): return the list size (i.e., number of elements in the list)

get(index): return theindexth element of the list

indexO f(x): return the index of the first occurrence of x in

the list, return -1 ifx is not in the list

remove(index): remove and return theindexth element,

elements with higher index have their index reduced by 1

add(theIndex, x): insert x as theindexth element, elements

with theIndex>= index have their index increased by 1

output(): output the list elements from left to right

}

Linear List as Java Interface

An interface may include constants
and abstract methods (i.e., methods
for which no implementation is
provided).

10

Linear List as Java Interface

public interfaceLinearList

{

public booleanisEmpty();

public intsize();

public Objectget(int index);

public int indexOf(Object elem);

public Objectremove(int index);

public voidadd(int index, Object obj);

public StringtoString();

}

Implementing An Interface

public classArrayLinearListimplementsLinearList

{

// code for all LinearList methods must be provided here

}

11

Linear List As An Abstract Class

An abstract class may include
constants, variables, abstract
methods, and nonabstract methods.

Linear List As Java Abstract Class

public abstract classLinearListAsAbstractClass
{

public abstract booleanisEmpty();
public abstract intsize();
public abstract Objectget(int index);
public abstract intindexOf(Object theElement);
public abstract Objectremove(int index);
public abstract voidadd(int index,

Object theElement);
public abstract StringtoString();

}

12

Extending A Java Class

public classArrayLinearList

extendsLinearListAsAbstractClass

{

// code for all abstract classes must come here

}

Implementing Many Interfaces

public classMyIntegerimplements Operable, Zero,

CloneableObject

{

// code for all methods of Operable, Zero,

// and CloneableObject must be provided

}

13

Extending Many Classes

NOT PERMITTED IN JAVA

A Java class may implement as many
interfaces as it wants but can extend at most
1 class.

Data Structures In Text

All but 1 of our data structures are specified as Java
interfaces.

Exception is Graph in Chapter 17.

Java specifies all of its data structures as interfaces.

java.util.List

