Multicast Address Allocation

October 10 2007
pharsh@cise.ufl.edu
Different Approaches

- **Static Allocation Schemes**
- **Flat address allocation schemes**
 - IRMA (sdr – Mark Hadley and Van Jacobson)
 - IPRMA (Van Jacobson)
- **Hierarchical allocation schemes**
 - **Contiguous Schemes**
 - Prefix based allocation schemes
 - Contiguous Cyclic allocation schemes
 - **Non Contiguous Schemes**
Characteristics of Good Allocation Scheme

- Ability to successfully allocate addresses while minimizing the number of blocks a child domain holds
 - To keep routing table small
- Minimize the number of times child domain changes address
 - To minimize routing flux
- Maintain high level of utilization
Before we proceed ...

- Multicast address allocation makes sense for IPv4 (because of its limited multicast address space)
- With IPv6 and alternative multicast protocols like SSM, addressing issue will be resolved
- So why do we care about multicast addressing problem??
 - Because of reluctance of sys admins to use SSM
 - SSM allows each IP host, 16 million multicast addresses
 - Resistance of service providers to migrate to IPv6
Static Allocation Schemes

- GLOP
 - Can be used to assign permanent multicast address to long lived session example TV series broadcast
 - GLOP Addresses are in control of ISPs which have been assigned AS numbers by IANA.
 - But there are only 256 addresses per AS
 - Can not scale to large number of sessions
Flat addressing Schemes

- IRMA – Informed Random Multicast Address Allocation scheme
 - Used by sdr, a MBONE session directory tool
 - Address collision on the order of $O(\sqrt{N})$
 - For collision free performance: requires global knowledge of currently allocated addresses

- IPRMA – Informed Partitioned Random Multicast Address Allocation scheme ...
 - Whole address space partitioned on the lines of popular TTL boundaries
 - Ideal performance achieved with large number of partitions where address collision improved to $O(N)$
 - Results in oversubscribed and under subscribed partitions
 - Collisions could still result because of asymmetric TTL scoping
Hierarchical Allocation Schemes

• Prefix based schemes
 - Don't care bits are the trailing bits, ex A8.76.xx.xx
 - Used in MASC proposal
 - May lead to fragmented and unused address chunks

• Contiguous schemes
 - Don't care bits can occur anywhere not only at trailing bits
 - Example: A8.xx.xx.76 (don't care bits may wrap around)
 - Has better address aggregation property (Cyclic)

• Non Contiguous Allocation Schemes
 - Don't care bits do not have to appear together
 - Example: Ax.87.xx.6x
 - Has the best address space utilization capability in theory
MASC

- Multicast Address Set Claim
 - current IETF proposal for hierarchical dynamic multicast address allocation scheme
 - Allows for a child domain to claim a subset of address of its parent domain for allocation purposes
 - The child domain listen for address collision for some long time
 - In case of no collision, it assigns that subset of addresses to MAAS (Multicast Address Allocation Servers) for assignment to individual multicast sessions.
 - Allows for address expansion by migration, doubling etc ...
 - Address Aggregation could be challenging and complex
 - Over time could result in fragmented address space
Non-Contiguous Vs Prefix Based Allocation Scheme

- Simulations based on various load functions for both non-contiguous and prefix based algorithm shows counter-intuitive results.
- For large load, prefix based schemes performed better than the other.
- Researchers reasoned this observation on how these two algorithms might partition the address space.
- Theoretically non-contiguous algorithms should have performed better, but such an allocation algorithm is still not yet known.
- RESEARCH TOPIC???????
Our Solution to IPv4 Multicast Address Allocation ...

Topic of next CONS presentation :D