

Ditto Processor

Shih-Chang Lai
Dept. of ECE

Oregon State University
 Corvallis, OR

Shih-Lien Lu
Konrad Lai

Microprocessor Research,
 Intel Labs.

Hillsboro, OR
Shih-lien.l.lu@intel.com

Jih-Kwon Peir
Dept. of Computer Science

University of Florida
Gainesville, FL

Abstract
Concentration of design effort for current single-chip
Commercial-Off-The-Shelf (COTS) microprocessors has
been directed towards performance. Reliability has not
been the primary focus. As supply voltage scales to
accommodate technology scaling and to lower power
consumption, transient errors are more likely to be
introduced. The basic idea behind any error tolerance
scheme involves some type of redundancy. Redundancy
techniques can be categorized in three general categories:
(1) hardware redundancy, (2) information redundancy, and
(3) time redundancy. Existing time redundant techniques
for improving reliability of a superscalar processor utilize
the otherwise unused hardware resources as much as
possible to hide the overhead of program re-execution and
verification. However, our study reveals that re-executing
of long latency operations contributes to performance loss.
We suggest a method to handle short and long latency
instructions in slightly different ways to reduce the
performance degradation. Our goal is to minimize the
hardware overhead and performance degradation while
maximizing the fault detection coverage. Experimental
studies through microarchitecture simulation are used to
compare performance lost due to the proposed scheme with
non-fault tolerant design and different existing time
redundant fault tolerant schemes. Fourteen integer and
floating-point benchmarks are simulated with 1.8~13.3%
performance loss when compared with non-fault-tolerant
superscalar processor.

1. Introduction

Transient errors, also called soft errors, can be
introduced by alpha or neutron particles strikes. They can
also be introduced by power supply disturbances or other
environmental variations. As supply voltage scales to
accommodate technology scaling and to lower power
consumption, transient errors are more likely to be
introduced [1-5]. Transient errors may affect
microprocessors in many ways [6-7]. One possible
manifestation of soft errors in the modern processor is
undetected data corruption. Experiments done by injecting
faults into unprotected microprocessors resulted in the
observation of non-negligible risk of data corruption [8].
Soft errors cannot be detected by manufacturing testing nor
by periodic testing. With widespread usage of
microprocessors in critical financial data processing, it is
desirable to have microprocessors capable of transparent

recovery and protection from data corruption in the face of
soft errors.

The basic idea behind any error tolerance schemes
involves some type of redundancy. Redundancy techniques
can be categorized in three general categories [9-10]: (1)
hardware redundancy [11], (2) information redundancy [13-
14] and (3) time redundancy [15-16]. Hardware redundancy
employs physical duplication and achieves redundancy
spatially. Information redundancy with error detection and
correction coding is effective in protecting memory
elements against transient faults. Transient faults that occur
in the logic blocks have no easy way to increase immunity
besides utilizing either hardware redundancy or time
redundancy. Time redundancy re-executes operations with
the same hardware and obtain redundancy temporally. Time
redundancy can be performed at different levels of the
microprocessor. Work done by Nicolaidis [17] proposed a
way to duplicate in time at the circuit level. This method
introduces a delay element between the combination logic
and the pipeline register allowing the data to be latched
twice at different time. At the microarchitecture level, time
redundancy can be achieved by instruction re-execution or
by check pointing and rollback [18]. At the software level it
can be accomplished by statically duplicating the program
in multiple versions [12]. It assumes that if one version
fails, other versions will produce correct results. In this
paper, we focus on the microarchitecture level of time
redundancy technique.

Existing microarchitecture level time redundancy
mechanisms lose performance due to blindly duplicating
the execution of instructions at either decode stage
[25][27][32][34] or at commit stage [22-24][33]. Both
schemes verify the result at the point when the original
copy is ready to retire and redundant copy has completed
execution.

1. Duplicating the instructions at decode stage generates
many unnecessary instructions to consume hardware
resource when branch mis-prediction occurs.

2. The second scheme stored the committed instructions
to a buffer in program order. This buffer provides the
information of retired instructions to the fetch units.
The instructions would then be re-fetched, re-decoded,
re-renamed and re-executed.

The main drawback of the first scheme is that it does
not cover faults that may occur at the frond-end of the
pipeline. The second approach is commonly used in
Simultaneous multithreading (SMT) based fault tolerant
processors. They have better fault coverage compare to the

first approach. However, if they only have limited
resources, the performance degradation of the second
scheme is worse than the first. The main reason is that the
second scheme reduced the instruction bandwidth available
to the original instruction stream [27]. Since long latency
operations tend to stay in reorder buffer longer than short
latency operation, our study reveals that the long latency
operations are important factor to the performance loss of
both schemes. Here we categorize memory reference micro-
operation, multiply and divide operations as long latency
instructions and the rest, including data effective address
calculation, are short latency operations.

In this paper we proposed a Ditto Processor to
combine the advantages of two previous schemes and still
be able to reduce the performance loss needed for reliable
computing. It achieves the goal by handling short and long
latency instructions in slightly different ways. After the
instructions are decoded, long latency instructions would
speculatively execute twice and the results are compared
before instructions committed. All instructions are cloned
when they are ready to retire. The duplicated instructions
are held in a buffer and send back to the beginning of the
pipeline. Since results of long latency instructions are
checked, the clones of these instructions would not pass
execution stage again after renaming operation are verified.
For the clones of short latency operations, once they
completed the re-execution, results are compared with the
results of original instructions. If the results of any types
instructions do not match with their clones, processor
rollbacks to the point prior to the execution of these
instructions.

This approach is unique in several ways:
1. It does not require SMT support and the operation

system needs not to be aware of the duplicated
instructions.

2. The entire pipeline except the commit stage is covered
instead of just functional units. Commit stage must be
duplicated in order to have full coverage.

3. Detecting the transient fault of short and long latency
instructions in different ways and having fewer penalty
cycles for fault recovery help to reduce performance
loss. Our simulation result shows 1.8~13.3%
performance degradation.

This paper attempts to quantify and compare
performance degradation of various time redundant
schemes using a microarchitecture simulator when faults
are present. It assumes transient faults are few and occur
only as isolated single event. When a fault occurs during
the simulation, it is always detected. Performance lost due
to re-execution and accounting is logged. This paper does
not guarantee schemes used will detect all faults. It is
organized as follows. In the next section we provide
background research in this area. In section 3 we discuss
the details of Ditto Processor operation and additional
hardware overhead required. In section 4 we describe the
simulation experimental setup. In section 5 we present
results of our simulation study together with some
observations. Finally, we draw some conclusion.

2. Background and Previous Works

Present single-chip Commercial-Off-The-Shelf (COTS)
microprocessors have concentrated the design effort on
performance. Reliability has not been the primary focus.
However, some fault tolerant features have been added into
COTS microprocessors [19][31].

Hardware redundancy is one possible approach to cover
logic errors. The Pentium® Pro processor family has built-in
mechanism to connect two processors into the
master/checker duplexing configuration for functional
redundancy checking. It allows duplicated chips to compare
their outputs and detect errors. However, this technique
required 100% or more logic overhead. Other hardware
redundancy approaches adopted involve duplicating
selected logic within the chip and include error-checking
logic in all functional elements. IBM’s G5 processor is a
good example of this approach [19][21]. G5 duplicates its I-
unit and E-unit. It incurs no delay penalty with the
duplication because it is able to hide the compare-and-
detect cycle completely. Therefore G5 achieves improved
checking without any performance penalties. However,
there is a 35% circuit overhead.

Recently there has been a resurgence of interest in
utilizing time redundancy at the microarchitecture level to
recover transient faults. We may classify these related
works into two categories. The first category utilizes SMT
mechanism to execute two redundant threads in a processor
with SMT support. The second type focuses on modifying
superscalar processor. We group several existing designs
into these two time-redundant schemes.

A. Utilizing SMT mechanism in a SMT processor:

1. Active-stream/Redundant-stream Simultaneous
Multithreading (AR-SMT) proposed by Rotenberg [22]
exploits several recent microarchitectural trends to
protect computation from transient faults and some
restricted permanent faults. In this approach, a SMT
processor executes an instruction stream called active
stream (A-stream) first. Results committed from this
instruction stream are stored in a delay buffer. A
second stream (R-stream) of instructions tails behind
the A-stream with a distance equals to the length of the
delay buffer. Results from the R-stream execution are
compared with results stored in a delay buffer and
committed if they match. Since there are two threads
being executed, there are two memory images
maintained.

2. Recently, the same research group has proposed a new
paradigm for increasing both performance and fault
tolerance coverage called “slipstream”. Instead of
executing two exact instruction streams as in AR-SMT,
slipstream processors’ A-stream is shortened by the
removal of ineffectual instructions. This approach [23]
allows the A-stream to run ahead of the R-stream and
thus provides not only fault-tolerant coverage but also
performance improvement.

3. Work done by Reinhardt and Mukerjee on the
Simultaneous and Redundantly Threaded (SRT)
processor [33] also utilizes redundant thread in a SMT
processor to detect faults. The SRT dynamically
schedules the redundant thread to hardware resources
to have higher performance. Their work introduces the
abstraction called sphere of replication to identify the
fault coverage. .

4. Rashid et. al. proposed fault tolerant mechanism in the
Multiscalar Architecture [24]. Multiscalar processor
usually has many processing units to exploit the
instruction level parallelism (ILP). This technique
utilizes a minor part of the processing units for re-
executing the committed instructions. Both permanent
and transient faults in the processor units can be
detected.

B. Modified superscalar processor

1. Work done by Franklin [25] utilizes spare resources in
a superscalar processor to implement time-redundancy.
This approach duplicates all instructions at either the
dispatch or the issue stage. Duplicated instructions
occupy the otherwise under-utilized functional units to
produce checking results for verification.

2. Nickel et. al. [26] extended Franklin’s work and tried
to improve performance of time-redundant processors
by adding spare capacity. After an instruction
completes execution but before it is retired, a
duplicated copy is placed in a FIFO queue. This
duplicated instruction is re-scheduled and re-executed.
In order to minimize the performance loss, this method
also strategically adds extra functional units to the
pipeline.

3. Ray et. al. [32] proposed a similar scheme to what
Franklin has done. A single instructions stream creates
multiple redundant threads at decode stage and results
from duplicated threads are verified at commit stage.

4. Mendelson et. al. [27] mentioned that if the decoding
logic is not implemented by table lookup (memory
structure) one needs to employ some methods to
protect it from transient errors also. However, their
approach focused on re-executing the operations twice
at execution stage and verifying results before
instruction commit. This scheme has minimum
hardware requirement to perform error checking and
has less performance impact due to error detection.
However, compare to previous studies, this scheme has
less fault coverage in that it only verified the
correctness of functional units.

5. Austin et. al. [34][35][36] introduced the concept of
using a less complex checker named DIVA to verify
faults. The DIVA checker can verify not only transient
faults but also design faults. Moreover, the
performance impact of this extra checking mechanism
is less than 3%.

In summary, we found works on using SMT to detect
fault have better fault coverage but suffer higher percentage
performance loss. While works on using existing
superscalar processor, they do not cover the fault that may
occur at the frond-end of the pipeline. In this study, our
goal is to provide a fault tolerant processor which has low
cost, low performance degradation and high fault coverage.
We use a microarchitecture simulator to quantify the
performance loss of several schemes.

3. Design of Ditto Processor

Ditto Processor differs from previous approaches in that
it splits long latency operations and short latency operations
into different verification path. After the instructions are
decoded, long latency instructions are identified and
speculatively executed twice. Results of these long latency
instructions are compared but they are not committed. All
non-speculative instructions including those non-
speculative long latency instructions are cloned before
retirement. These duplicated instructions are held in a
buffer and send back to the beginning of the pipeline. Since
the result of long latency instructions are executed twice
and checked, the clones of these instructions would not pass
execution stage again after renaming operation are verified.

For the clones of short latency operations, once they
completed the re-execution, results are compared with the
results of original instructions. Any transient fault can
potentially be discovered when the result of the re-
execution differs from that of the original execution and
simple recovery scheme is used. If faults occurs at the
decode stage, results will differ also and be detected.

Prior to our main study, we observe, in an average, only
12% of the resources are utilized for integer and floating-
point applications on a baseline 8-issue superscalar
processor. This means that there are plenty of opportunities
to take advantage of these unused resources to hide the
overhead of program re-execution, verification and
transient fault recovery. However execution in a superscalar
tends to be busty at times. Without careful organization,
time-redundancy through cloning still degrades its
performance.

In the following sections we will describe in more
details the design of Ditto processor. After reading through
the design details, interested reader may find an example of
pipeline flow for a small piece of sample code in the
appendix.

3.1 What hardware is added to support fault-
tolerant mechanism?

Figure 1 illustrates the basic microarchitecture diagram
of Ditto processor. It has two additional blocks - a “delay
buffer” and a “verify logic”. Several existing blocks in a
superscalar processor also need to be modified. These
include the re-order buffer (ROB), the commit logic, the
fetch unit and the decode unit. We describe the changes
needed for each of these blocks.

B r a n c h P r e d i c t i o n U n i t

L 1 I n s t r u c t i o n C a c h e

D e l a y B u f f e rF e t c h U n i t C l o n e d F e t c h U n i t

D e c o d e r C l o n e d D e c o d e r

S c h e d u l e r

N o r m a l
I n s t r u c t i o n s

s t r e a m

C l o n e d
I n s t r u c t i o n s

s t r e a m
(L P - R O B)

R e a d R e g i s t e r / B y p a s s l o g i c

R e g i s t e r F i l e

F u n c t i o n a l E x e c u t i o n U n i t

C o m m i t L o g i c

W r i t e b a c k l o g i c

R e o r d e r B u f f e r

L o a d
S t o r e

Q u e u e
R e n a m e r

P r o c e s s o r C o r e

V e r i f y
l o g i c

L 1 D a t a C a c h e

 Figure 1 Basic Architecture of Ditto Processor

Delay Buffer: Instructions are executed normally the first
time. Results of committed instructions are queued in the
delay buffer similar to other schemes [22][23][26].
However, each entry not only stores the result but also
includes the associated instruction code and its instruction
address. For long latency operations, we also allocate the
immediate entry that follows to store source operands’
values. We called these instructions stored in the delay
buffer cloned instructions. These cloned instructions are
removed from the delay buffer when they are scheduled
and passed the registered read stage.

Fetch and decode units: Since the gap between processor
cycle time and memory access time will likely grow
wider each year, most likely fetch and decode units are
not the bottleneck. We choose to split the fetch and
decode units into two equal parts. Half of the fetch and
decode unit is reserved for cloned instructions stream. In
order to simplify the maintenance of normal instructions
and cloned instructions stream, an extra program counter
is added for the cloned instructions stream.
Reorder Buffer: We also found that the average reorder
buffer (ROB) occupancy in the baseline non-fault-tolerant
system with 128-entries ROB is about 50% for integer
benchmark and 90% for floating point benchmark. By
allocating the redundant part of ROB to cloned
instructions stream, we may reduce the performance
degradation without extra hardware overhead. After the
cloned instructions are decoded, they are placed at the
lower part of ROB (LP-ROB) as illustrated in Figure 1.
Results of normal instructions are copied from the delay

buffer to the result field of LP-ROB. Error Correction
Code (ECC) checking mechanism protects this copy
operation. In order to differentiate long latency instruction
and short latency instruction, extra bit is added to each
ROB entry. We will describe how to handle cloned
instructions stream renaming in section 3.3. Furthermore,
the size of LP-ROB should be small enough to minimize
the effect of normal instructions stream's throughput. Our
study reveals that long latency operations would have
severe impact on LP-ROB pressure and degrade the
performance accordingly. Hence, we suggest that short
and long latency instructions should go through different
verification path.
Status bit to handle duplicate execution: Since all long
latency instructions are executed twice including those
that are speculative, we adopt the idea from [27] to handle
these duplicate computations. This approach requires the
fewest hardware overhead. An extra status bit is added to
each of the ROB entries indicating the long latency
operation is ready to be executed the second time. Since
memory reference micro-ops belong to long latency
operations, this extra status bit is also appended to entries
of the load store queue (LSQ). Furthermore, the verify bit
is used to confirm that the computation of duplicated long
latency operations were completed and verified. After
these results are confirmed, results from duplicated copies
are discarded. Since results from the original instruction
and the duplicate copy may be ready at different cycles,
we also need to address the scheduling of their dependent
instructions. We schedule dependent instructions
according to the data ready time of the original copy,

since faults are not as frequent This cause no further
complication because a mismatch of results will bring
back execution prior to the faulty instruction.
Verify logic: Once these cloned instructions complete
their execution, cloned instructions’ results are compared
to the original instructions’ results saved in the result field
of ROB. Verify logic, next to the write-back stage, is used
to handle this error detection and recovery. We will
present this mechanism in the following section.

3.2 Error detection and Fault recovery mechanism

Ditto Processor employs two checking mechanisms to
detect potential transient faults. The first mechanism is
placed after the register-read stage. After a cloned
instruction's source operands are ready, we compare the
decoded instruction with the correspond entry in the delay
buffer. It detects two places where transient faults may
occur.

1. If this re-fetched instruction does not match the
correspond entry in delay buffer, it indicates the
occurrences of a transient error in the fetch unit or in
the decoder. For conditional and unconditional jump
instructions, the decoded target address is also verified.

2. For long latency operations if clones source operands
values does not match the correspond values in the
delay buffer, it indicates the occurrences of a transient
error in renaming logic.

This mechanism allows us to detect faults occurs at
earlier stages of the pipeline. The verification process is
overlapped with the execution stage and poses no extra
delay.

Figure 2 Instruction renaming example

The second checking mechanism occurs when the
cloned instructions complete their computation. Results of
cloned instructions are compared to the original results
stored in the result field of ROB entries. If the results are
the same, cloned instructions are removed from reorder
buffer. If results do not match, then we have detected a
transient fault in functional units. Since long latency
instructions already verified computation results while in
normal instructions stream, these instructions would not go
though this second mechanism.

 In both mechanisms, we recover the system back to the
known correct state similar to branch mis-prediction
recovery. Hence, there is no other extra hardware needed
beside what we have mentioned to handle this error
recovery on register file rollback. We will present this
rollback mechanism in the following section. Since, in this
study, we assume the mean time between faults (MTBF) is
about 10 million cycles, after several cycles of error
recovery, the second try1 should have a valid result and
program may continue to execute.

3.3 Cloned instruction renaming and register file
rollback mechanism

Since the decoder of normal instructions stream and
cloned instructions stream come from different paths, the
renamer should not mix these two streams together. Figure
2 shows a snapshot of the ROB during execution. Ditto
processor’s ROB is divided into two regions – the normal
ROB entries region and the LP-ROB entries region. The
LP-ROB maintains the program order of cloned instructions
stream while the rest of the ROB is used for normal
instructions stream.

We present an example to describe how Ditto Processor
handles instructions renaming. Let’s assume the LP-ROB
starts with entry j. Since “multiu” is at the head of LP-ROB,
all previous cloned instructions have been verified. The
source operand (r2) of “multiu” is mapped to architecture
register file, so is the source operand (r4) of “sub” and (r2)
of "addu". The source operand “r1” of instruction “sub” is
depending on the previous result of entry j. Since the
previous result has been copied from delay buffer to entry j
as described in section 3.1, the source operand (r1) of “sub”
may use this value and schedule immediately after
renaming. This is true for instructions “lw” and "addu" also.
This scenario contains no data hazard and allows cloned
instructions to fly through pipeline stages faster then normal
instructions. It also reduces possible performance loss due
to re-execution come with the time-redundant technique.

For long latency operations, if transient error occurs in

this renaming operation, the verify logic will detect the
source operands’ values are different from values produced
by the original instruction and will signal the recovery
mechanism. For short latency operations, the verify logic
would detect this renaming error if the clone's computation
result is different from the original result since clone
instruction stream and normal instruction stream handle
renaming operation independently.

In a redundant processor using simultaneous
multithreading technique such as AR-SMT, each thread
must maintain its own register status and values by register
map [22], it requires some additional hardware when
compared with Ditto Processor. In Ditto Processor we only
need to augment the state bits in architecture register file.

1 The second try means the instructions will be fetch,
decode and execute twice as mentioned and the result will
be verify again.

A nd iu r1 , r3 , 4
Xor r2 , r3 , r1
~

~

sub r1 , r1 , r4
Lw r3 , 16 , [r1]
A ddu r4 , r3 , r2

M u ltiu r1 , r2 , 4

i

i+1

ji

j+1

j+2

j+3
Lo w e r
p a rt-RO B
(LP-RO B)

From
R egFile

From
R O B
en try j

From
R O B
en try j+ 1

From
R O B
en try j+1

Whenever a normal instruction is ready to commit, it writes
the result to register file and transits the status bits from
“invalid” to “transient”. Once the cloned instruction is
verified, the status is changed from “transient” to
“verified”. This approach requires only one extra bit added
to each register. From the re-namer and scheduler’s point of
view, they treat “transient” and “verified” value in the same
way as data ready. If a transient error is detected, all
“transient” values are flushed from the architecture register
file. Moreover, all in-fly instructions are squashed similar to
miss-branch prediction recovery.

3.4 What types of operation are protected?

In the Ditto Processor design, we cover every type of
instructions for possible transient error. However, we do
assume that there is no self-modifying instruction in our
system.

Short latency Arithmetic/logic instructions: After these
instructions are ready to retire, they store the result and
other information to the delay buffer and ROB entry is
free for other normal instructions. The cloned instruction
is then fetched, decoded/renamed, scheduled and
executed. After the result is verified, the LP-ROB is free
for other cloned instructions. Since we assume the Branch
Prediction Unit is protected by the ECC mechanism, our
scheme may verify the correctness of decoded target
address and the outcome of branch.
Multiply/Division instructions: Since these instructions
have long execution latency, they are duplicated after
decode and speculatively execute twice and result are
compared and verified. Result of these instructions and
other information are stored in delay buffer for
verification later. These instructions are also cloned and
re-fetched. However, after it is decoded/renamed,
scheduled and read from register, they would not go
through computation again. As mentioned before they are
checked by the first checking mechanism. After passing
the first checking mechanism, these instructions are free
from LP-ROB.

LOAD/STORE type instructions: After this type
instruction was decoded, it generated two micro-ops: one
for data address calculation and the other one for memory
reference. Since memory micro-op belongs to long
latency operation, it would access cache memory twice
based on the normal instruction's calculated data address.
When this type instruction is ready to commit, it would
store the result and other information into delay buffer.
After the clone instruction is decoded, it would discard
the memory micro-op since we only need to verify the
correctness of data address.

3.5 What are protected units?

From Figure 1 we see that processor core is inside the
shaded area. In other words, we assume any units outside of
this area are protected by ECC logic. Furthermore, any

wires and control signals that communicate between
processor core and other units, such as data cache or ROB,
are also protected by other fault-tolerant techniques [3-
6][10-11][14]. Whenever a system interrupt or exception
occurs, protection logic will guard the transient fault to
make sure these requested are being served correctly. Since
the correctness of commit logic is imperatively important
on placing the result into delay buffer and this logic is very
small, we duplicated the commit logic to enforce its
correctness.

4. Simulation Configuration

We modified the SimpleScalar simulator [28] in order to
evaluate the performance degradation of different redundant
schemes when transient faults are present. We randomly
generate faults with MTTF of 10 millions cycles. When
each fault occurs, it could occur at any point of the pipeline.
In our study we randomly assign the fault to a particular
pipeline stage. 14 SPEC2000 benchmarks (8 integers, 6
floating points) [29] are used for our simulation study. All
benchmarks are executed for 500 million committed
instructions after skipping the first 500 million instructions.

4.1 Baseline Model

In our baseline model, we extend the existing
SimpleScalar pipeline model into seven stages: fetch,
decode/rename, schedule, register read, execution,
writeback and commit. Each stage takes one cycle. In order
to eliminate the effect of data speculation, we schedule the
dependent instruction at the data ready cycles. For example,
in a cache-hit case, load operation takes 3 cycles to access
data (2 cycles to access the tag array to determine hit/miss
and 1 cycle to access data array). The load dependent
instructions will be scheduled 2 cycles later after data
effective address is calculated. Table 1 shows the overall
baseline system parameters.

Fetch, decode, issue, commit width 8
Branch Predictor
Branch Target Buffer

Gshare, 64-entry, 8
way, 8k-entry, 8 way

ROB / LSQ size 128/128 entries
L1 I/D cache 16KB/16KB

4-way, 32B line size
L1 I/D cache hit latency 1/3 cycles
L2 cache 1MB size

8-way, 32B line size
L2 / Memory latency 10/100 cycles
of pipelined integer
ALU/MULT/DIV

4/1/1

Integer ALU/MULT/DIV latency 1/3/20
of pipelined floating point
Adder/MULT/DIV

4/1/1

Floating point Adder/MULT/DIV
latency

2/4/24

Read/Write port 4

Table 1 Baseline model system parameters

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

gc
c

gz
ip

mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x
vp

r

int
-a

vg

am
mp

ap
si ar

t

mes
a

mgr
id

sw
im

fp-
av

g

AR-30
AR-10
Dual
O3rs
Ditto

Integer Average

Floating Point
 Average

Figure 3 Instruction Per Cycle (IPC) Degradation

4.2 Different Simulation Machine Model

In this study, we compare five different machine
models. The baseline model (Base) is described in section
4.1 In order to compare Ditto Processor with AR-SMT
[22], we adapt AR-SMT into superscalar model, named
AR model. There are two differences between AR-SMT
and AR model. First, R-stream in AR model does not
perform memory reference micro-ops because this
operation would require operation system to be aware of
A-stream and R-stream. Second, AR model does not
contain trace cache. We further define that 30% of ROB
entry allocated to R-stream would be AR-30 model (96
entries for A-stream and 32 entries for R-stream).
Similarly, R-stream of AR-10 model would utilize 10% of
ROB entry (Similarly, 112 and 16 entries).

In our experiment, Ditto Processor model’s (Ditto)
cloned instructions utilize 10% of ROB (16 entries for
LP-ROB). Our study reveals that this allocation strategy
would have the least performance effect on normal
instructions stream. Both AR and Ditto model use 128-
entry delay buffer to store the committed instructions.

We also model the 2-way redundant scheme (Dual) by
Ray et. al. [32]. The Dual model has the same system
parameters as our Baseline. There are two differences
between Ray’s original architecture and ours Dual model.
First of all, the original design has 64KB I-cache, 32KB
D-cache, 512KB L2 cache and 2 read/write ports while
our memory subsystem modeling is slighted different and
summarized in Table 1. Second, ours model has longer
pipeline stages. Despite these differences, our dual model
matches their result closely.

Out-of-order Reliable Superscalar (O3rs) [27] is also
implemented in this study for comparison. System
parameters of O3rs are the same as the Baseline model.
The O3rs model should have the best result in terms of
Instructions Per Cycle (IPC) degradation, since it only

verifies the functional units and it does not take away
ROB entries from normal instructions like other schemes
for re-computation.

4.3 Fault Injection Mechanism

In our study, we inject faults randomly at different
stages every 10 million cycles for all different schemes
described above. In other words, the fault could be at
fetch unit, decoder, scheduler, register read operation,
execution, bypass logic or others. As instructions with
faults pass through our checking mechanism they will be
detected as described in section 3.2. Machine will be reset
back to the known state. In this study, we assume two
cycles of error detection and recovery penalty.

5. Performance result

In this section, we present the simulation result of our
study. Section 5.1 shows the IPC degradation of each
model and section 5.2 shows the functional units resource
utilizations of each model. Section 5.3 presents the
characteristic of Ditto Processor.

5.1 Performance degradation

Figure 3 illustrates the percent performance
degradation of several time-redundant fault-tolerant
designs. AR-10 has slight performance improvement over
AR-30 in that the former utilizes less LP-ROB. However,
for one of the floating-point benchmark - “mgrid”, it
shows a large difference in performance. Further study
reveals that “mgrid” has over 65% of long latency
instructions. As LP-ROB size reduces, it leaves more
space in upper ROB to occupy long latency instructions
and, in turns, reduce the performance loss. The average
floating-point benchmark result also shows the same
behavior that AR-10 outperforms AR-30 by about 7%.

Since integer benchmarks have over 70% of short latency
operations* and these operations enter and leave LP-ROB
within a very short time, they give AR-10 only slight
advantage over AR-30.

In the Dual model, after the instructions are decoded,
it created another copy of all instructions. A duplicated
instruction also occupies a ROB entry as described in
[32]. This mechanism reduces the effective size of ROB
by half. Therefore, this scheme suffers severe
performance loss in floating-point benchmarks and “mcf”.
In these cases, compared to AR-30, Dual model degrades
the performance by about 9% in floating point
benchmarks and 3% in “mcf”.. The O3rs model has the
least performance loss among five models because it does
not take away ROB entries for duplicated instructions.
O3rs loses 1.7% and 2% performance for integer and
floating-point benchmarks respectively. As mentioned
O3rs does not cover front-end part of the pipeline nor
memory instructions. Since in our Ditto model the cloned
long latency instructions do not pass through execution
stage again and reduce the pressure on LP-ROB, this
further reduces the performance loss. Ditto suffers about
1.8~13.3% performance degradation.

We also observe that “ammp” benchmark has very
little performance loss, only about 0.4%, on all models.
Further study reveals that “ammp” has very high L1 and
L2 data cache local miss ratio, about 50% and 90%
respectively, most of the operations are hinder by lengthy
memory reference. In this case all our simulated fault-
tolerant models may be able to benefit from normal
instructions stream's low throughput and low functional
units utilization.

In summary, AR-30, AR-10 and Dual model has an
average of 10% performance degradation on integer
benchmarks. Ditto model outperforms these three models
and reduces the performance loss by 40% to about 6% on
integer benchmarks. For floating-point benchmarks, the
performance loss of AR-30, AR-10 and Dual models are
about 19%, 12% and 28%, respectively. Ditto reduces the
degradation by 30% and 70% respectively to 8.6% when
it is compared with AR-10 and Dual models on floating-
point benchmarks.

5.2 Functional unites resource utilization

Since different models have different effects on
functional unit’s resource utilization rate, Figure 4
presents each model’s utilization ratio in more detail.
Compared to the Base model, all other models have better
functional unites utilization, especially Ditto. Since Ditto
model verifies all types of instructions, it utilizes resource
more efficiently. On average, Ditto utilizes integer ALU
units about 15% more than Base model.

Dual model has the similar ratio as Ditto in integer
benchmarks, but since it duplicates all instructions
including instructions that are speculative, the
performance loss is higher. For floating-points
benchmarks, there are more long latency instructions
putting more pressure on the ROB. This further reduces
the effective instructions windows size. For example,

Dual model only uses half of the ROB to explore
instructions level parallelism (ILP). Hence, Dual has the
worse integer ALU utilization rate for floating-point
benchmarks. Because both Ditto and Dual models verify
cache access operations, memory ports are used more
efficiently on these two models.

Figure 4 Average functional units resource
utilization2

O3rs posts no effect on cache ports since O3rs does

not verify memory reference micro-ops. Since integer
benchmarks rarely use multiplier and divider, all models
has very little utilization rate for these modules. O3rs
model has slight better MULT/DIV unit utilization for
floating-point benchmarks in that it has more ROB entry
to explore ILP than Ditto3. In summary, we observe that,
when compared to Base model, Dual model has about 5%
more on functional utilization for integer benchmarks and
3% more for floating-point benchmarks. O3rs model is
3.6% and 4.7%, respectively. For Ditto model, it is 5.7%
and 7.4% better on average. Hence, Ditto model has full
transient fault coverage with less performance
degradation.

5.3 The characteristic of Ditto Processor

Figure 5 depicts the percentage of IPC degradation
when we compare the Ditto to the Base model with
different L1 cache hit latency. We observe that as L1
cache hit latency increases, the Ditto model gradually
reduces the performance loss on both integer and floating-
point benchmarks. One factor that affects the percentage
of performance degradation is the amount of idle time
available in the processor for time redundancy to perform
transient fault checking. The basic motivation for our
approach is to utilizing these stalled processor cycles to

2 There are four groups in this figure and each group contains integer
and floating-point benchmarks result. The most left group is integer
ALU unit utilization ratio. The second group is memory port
utilization ratio and the third group is the combination of integer and
floating-point multiplier/Divider unit utilization ratio. The most right
side group is overall functional unit utilization ratio.
3 Ditto model has 112 ROB entries for normal instructions stream and
16 entries for cloned instructions stream.

0%

10%

20%

30%

40%

50%

60%

int-alu/
int-bench

memport/
int-bench

mult-div/
int-bench

all-fu/
int-bench

Base
Dual
O3rs
Ditto

verify computation through re-execution. As memory
latency increases in terms of cycle time, we have more
stalled cycles in the processor and more resources
available. This gives more opportunity to perform cloned
instructions execution and reduce the effect of
performance degradation.

5.0%

5.5%

6.0%

6.5%
7.0%

7.5%
8.0%

8.5%
9.0%

3 4 5

IP
C

 d
eg

ra
da

tio
n

integer
floating-point

Figure 5 Effect of L1 cache hit latency on Ditto

6. Conclusion

In this paper we have presented the detail design of a
fault tolerant superscalar processor called Ditto
Processor. This processor re-fetches and re-decodes all
instructions to protect all pipeline stages’ logic from soft
errors to assure high computation confidence. It requires
little extra hardware on top of the baseline superscalar.
We explain the additional microarchitecture resources
needed and what units we can protect. We also explain
how to handle the register renaming in Ditto Processor.
We further identified that long latency operations have
significant impact on time-redundant fault-tolerant
superscalar processor. We studied the performance
degradation of Ditto Processor in comparison with
baseline superscalar and other published schemes. In
general, Ditto Processor suffers only 1.8~13.3% of
performance degradation for all benchmarks.

As Ditto Processor have only 1~6% more
performance loss compared to O3RS scheme, our scheme
have much better fault coverage. The degree of reduction
varies with amount of contention on the resources brought
about by duplication. We also observed that as memory
latency increases, the performance degradation on Ditto
Processor is reduced. While memory processor
performance gap continues to grow with technology
advancement, there will be more stalled cycles available
for time redundancy. Our study reveals that different
applications have different characteristics and have
various requirements on hardware resources. Adopting
the time-redundant fault-tolerant technique based on this
knowledge would provide a balance designed fault-
tolerant computing environment with less performance
loss.

Acknowledgement
Authors want to thank anonymous reviewers for very

helpful comments.

7. References

[1] T. Juhnke and H. Klar, “Calculation of the Soft Error Rate
of Submicron CMOS Logic Cicuits,” IEEE JSSC, Vol. 30,
No. 7, July 1995, pp. 830-834.

[2] J. Robertson, “Alpha Particles Worry IC Makers as Device
Features Keep Shrinking,” Semicond. Business News,
October 21, 1998.

[3] N. Cohen et. al., “Soft Error Considerations for Deep-
Submicron CMOS Circuit Applications,” Proc. of IEDM,
1999, pp. 315-318.

[4] P. Hazucha and C. Svensson, “Impact of CMOS
Technology Scaling on the Atmospheric Neutron Soft Error
Rate,” IEEE Trans. On Nuclear Science, Vol. 47, No. 6,
Dec. 2000, pp. 2586-2594.

[5] T. Karnik et. al., “Scaling Trends of Cosmic Rays Induced
Soft Errors in Static Latches Beyond 0.18um,” Symposium
on VLSI Circuits Design of Tech. Papers, 2001, pp. 61-62.

[6] U. Gunneflo, “Evaluation of Error Detection Schemes
Using Fault Injection by Heavy-ion Radiation,” Digest of
Papers in the 19th International Symposium on Fault-
Tolerant Computing, 1989, pp. 340-347.

[7] G. Miremadi, and J. Torin, “Evaluating processor-behavior
and three error-detection mechanisms using physical fault-
injection,” IEEE Transactions on Reliability, Volume: 44,
Issue: 3 , Sept. 1995, pp. 441 –454.

[8] R. Horst et. al., “The Risk of Data Corruption in
Microprocessor-based Systems,” Digest of Papers in the
23rd International Symposium on Fault-Tolerant
Computing, Aug. 1993, pp. 576 –585.

[9] Barry W. Johnson, Design and Analysis of Fault Tolerant
Digital Systems, Addison-Wesley, 1989.

[10] A. Avizienis, “Toward Systematic Design of Fault-Tolerant
Systems,” IEEE Computer, April 1997, pp. 51-58.

[11] D. K. Pradhan , Fault-tolerant computer system design,
Prentice-Hall , 1996.

[12] W. Torres-Pomales, “Software Tolerance: A Tutorial,”
NASA Tech. Memorandum, TM-2000-210616, Langley
Res. Center, Hampton Virginia, Oct. 2000.

[13] R.E. Blahut, Theory and Practice of Data Transmission
Codes, Addison-Wesley, 1983.

[14] Parag K. Lala, Self-Checking and Fault-Tolerant Digital
Design, Academic Press, 2001.

[15] G. Sohi, “A Study of Time-Redundant Fault Tolerance
Techniques for High-performance Pipelined Computers,”
Digest of Papers in the 19th International Symposium on
Fault-Tolerant Computing, 1989

[16] J. H. Patel and L. Y. Fung, “Concurrent Error Detection in
ALU’s by Recomputing with Shifted Operands,” IEEE
Trans. On Computers, Vol. C-13, No. 7, July 1982, pp.
581-595.

[17] M. Nicolaidis, “Time redundancy based soft-error tolerance
to rescue nanometer technologies,” Proceedings of 17th
IEEE VLSI Test Symposium, 1999, pp. 86 –94.

[18] M. Franklin, “Incorporating Fault Tolerance in Superscalar
Processors,” Proceedings of 3rd International Conference
on High Performance Computing, 1996, pp. 301 –306.

[19] A. Avizienis and Y. He, Microprocessor entomology: a
taxonomy of design faults in COTS microprocessors,
Dependable Computing for Critical Applications 7, 1999,
pp. 3 –23.

[20] L. Spainhower and T. A. Gregg , “IBM S/390 Parallel
Enterprise Server G5 fault tolerance: A historical
perspective,” IBM J. of Research and Development, Vol.
43, No. 5/6, 1999.

[21] Y. He et .al .“Assessment of the applicability of COTS
microprocessors in high-confidence computing systems: a
case study,” Proceedings International Conference on
Dependable Systems and Networks, 2000

[22] E. Rotenberg, “AR-SMT: a microarchitectural approach to
fault tolerance in microprocessors,” Digest of Papers in
29th International Symposium on Fault-Tolerant
Computing. 1999, pp. 84 –91.

[23] K. Sundaramoorthy et. Al. "Slipstream Processors:
Improving both Performance and Fault Tolerance,” 9th Int'l
Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[24] F. Rashid et. al., “Fault Tolerance Through Re-execution in
Multiscalar Architecture,” Proc. Conference on Dependable
Systems and Networks, 2000, pp. 482 –491.

[25] M. Franklin, “A Study of Time Redundant Fault Tolerance
Techniques for Superscalar Processors,” Digest of Papers
in the 25th International Symposium on Fault-Tolerant
Computing, Aug. 1995, pp. 207–215.

[26] Joel Nickel, "REESE: A Method of Soft Error Detection in
Microprocessors,” M. S. Thesis, Dept. of ECE, Iowa State
University, Ames Iowa, 2000.

[27] A. Mendelson and N. Suri, “Designing High-Performance
and Reliable Superscalar Architectures The Out of Order
Reliable Superscalar(O3RS) Approach,” Proc. Conference
on Dependable Systems and Networks, 2000,

[28] Doug burger, Todd M. Austin “Simplescalar Tool Set
Version 2.0,” Technical Report #1342, June
1997,University of Wisconsin-Madison Computer Science
Department

[29] http://www.spec.org/osg/cpu2000/docs/readme1st.txt
[30] S. Sair and M. Charney, “Memory Behavior of the

SPEC2000 Benchmark Suite,” IBM Research Report, RC
21852 (98345), Oct. 6, 2000.

[31] A. Avizienis, “A Fault Tolerance Infrastructure for
dependable Computing with High-Performance COTS
Components”, In proceeding of Dependable Systems and
Networks, 2000.

[32] Joydeep Ray, et. al., ”Dual Use of Superscalar Datapath for
Transient-Fault Detection and Recovery”, In proceeding of
34th Microarchitecture, December,2001.

[33] Steven k. Reinhardt et. al. “Transient Fault Detection via
Simultaneous Multithreading”, In proceedings of the 27th
International Symposium on Computer Architecture, June,
2000

[34] T. Austin, “DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design”, In proceeding of
32nd Microarchitecture, November, 1999.

[35] T. Austin, “DIVA: A Dynamic Approach to
Microprocessor Verification”, The Journal of Instruction-
Level Parallelism Volume 2, 2000.

[36] Saugata, et. al. “Effective Checker Processor Design”, in
proceeding of 33rd Microarchitecture, December 2000

[37] A Yoaz et. al. “Speculation Techniques for improving load
related Instruction scheduling”, Proc. Of 26th Int’l Symp.
On Computer Architecture, May, 1999.

APPENDIX: Examples of pipeline flow and fault
detection

A. Sample program instructions:
 Instruction Label in the pipeline diagram

next_loc:Multiu r1,r2,4 A
 Sub r1,r1,r4 B
 Lw r3,16[r1] C
 Addu r4,r3,r2 D
 Bne r4,r5, [next_loc] E

B. Pipeline diagram:
ROB FET Dec SCH REG EXE/MEM WB CMT

1 A14 A2 A3 A4 A5-7 A8(CHK) A9
2 B1 B2 B8 B9 B10 B11 B12
3 C1 C2 C11 C12 C13-16 C17(CHK) C18
4 D1 D2 D17 D18 D19 D20 D21
5 E2 E3 E20 E21 E22 E23 E24
6 A'3 A'4 A'5 A'6 A'7-9 A'10(CHK) A'11
7 B'3 B'4 B'20 B'21 B'22 B'23 B'24
8 C'3 C'4 C'23 C'24 C'25-28 C'29(CHK) C'30
9 D'3 D'4 D'29 D'30 D'31 D'32 D'33
LP-ROB ~ ~ ~ ~ ~ ~ ~
1 $A10 $A11 $A12 $A13 $A14(CHK)
2 $A'12 $A'13 $A'14 $A'15 $A'16(CHK)
3 $B13 $B14 $B15 $B16 $B17(CHK) $B18(CHK)
4 $C19 $C20 $C21 $C22 $C23(CHK) $C24(CHK)
5 $D22 $D23 $D24 $D25 $D26(CLK) $D27(CLK)
6 $E25 $E26 $E27 $E28 $E29(CHK) $E30(CHK)
7 $B'25 $B'26 $B'27 $B'28 $B'29(CHK) $B'30(CHK)
8 $C'31 $C'32 $C'33 $C'34 $C'35(CHK) $C'36(CHK)
9 $D'34 $D'35 $D'36 $D'37 $D'38(CHK) $D'39(CHK)

C. Examples of fault detection:
Case1: A fault occurs at the FET stage of inst. B would be
detected at $B17. Inst. C, D, E, B’, C’, D’ would be squashed
from the ROB. Inst. $B would be squashed from the LP-ROB
Case 2: A fault occurs at the DEC stage of inst. E would be
detected at $E29. Inst. E, C’, D' would be squashed from the
ROB. Inst. $E, $B' would be squashed from the LP-ROB.
Case 3: A fault occurs at the EXE stage of inst. A' would be
detected at A'10. Inst. B, C, D, E, A’, B’, C’, D’ would be
squashed from the ROB.
Case 4: A fault occurs at the WB stage of inst B would be
detected at $C23. Error will occur in propagating the result to
B's dependent instructions. Inst. E, C',D' would be squashed
from the ROB. Inst. $C, $D would be squashed from the LP-
ROB.
Case 5: A fault occurs at the REG stage of inst A' would
be detected at $A'16. Inst. B', C’, D’ would be squashed
from the ROB. Inst. $A' would be squashed from the LP-
ROB.

4 The number following the instruction label indicates
the cycle time. An “’” means it is a cloned instruction.
For example A’3 means instruction A cloned at cycle
time 3.

