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Abstract 
Concentration of design effort for current single-chip 
Commercial-Off-The-Shelf (COTS) microprocessors has 
been directed towards performance. Reliability has not 
been the primary focus. As supply voltage scales to 
accommodate technology scaling and to lower power 
consumption, transient errors are more likely to be 
introduced. The basic idea behind any error tolerance 
scheme involves some type of redundancy. Redundancy 
techniques can be categorized in three general categories: 
(1) hardware redundancy, (2) information redundancy, and 
(3) time redundancy. Existing time redundant techniques 
for improving reliability of a superscalar processor utilize 
the otherwise unused hardware resources as much as 
possible to hide the overhead of program re-execution and 
verification. However, our study reveals that re-executing 
of long latency operations contributes to performance loss. 
We suggest a method to handle short and long latency 
instructions in slightly different ways to reduce the 
performance degradation. Our goal is to minimize the 
hardware overhead and performance degradation while 
maximizing the fault detection coverage. Experimental 
studies through microarchitecture simulation are used to 
compare performance lost due to the proposed scheme with 
non-fault tolerant design and different existing time 
redundant fault tolerant schemes. Fourteen integer and 
floating-point benchmarks are simulated with 1.8~13.3% 
performance loss when compared with non-fault-tolerant 
superscalar processor.  

1.  Introduction 

Transient errors, also called soft errors, can be 
introduced by alpha or neutron particles strikes. They can 
also be introduced by power supply disturbances or other 
environmental variations. As supply voltage scales to 
accommodate technology scaling and to lower power 
consumption, transient errors are more likely to be 
introduced [1-5]. Transient errors may affect 
microprocessors in many ways [6-7]. One possible 
manifestation of soft errors in the modern processor is 
undetected data corruption. Experiments done by injecting 
faults into unprotected microprocessors resulted in the 
observation of non-negligible risk of data corruption [8]. 
Soft errors cannot be detected by manufacturing testing nor 
by periodic testing. With widespread usage of 
microprocessors in critical financial data processing, it is 
desirable to have microprocessors capable of transparent 

recovery and protection from data corruption in the face of 
soft errors. 

The basic idea behind any error tolerance schemes 
involves some type of redundancy. Redundancy techniques 
can be categorized in three general categories [9-10]: (1) 
hardware redundancy [11], (2) information redundancy [13-
14] and (3) time redundancy [15-16]. Hardware redundancy 
employs physical duplication and achieves redundancy 
spatially. Information redundancy with error detection and 
correction coding is effective in protecting memory 
elements against transient faults. Transient faults that occur 
in the logic blocks have no easy way to increase immunity 
besides utilizing either hardware redundancy or time 
redundancy. Time redundancy re-executes operations with 
the same hardware and obtain redundancy temporally. Time 
redundancy can be performed at different levels of the 
microprocessor. Work done by Nicolaidis [17] proposed a 
way to duplicate in time at the circuit level. This method 
introduces a delay element between the combination logic 
and the pipeline register allowing the data to be latched 
twice at different time. At the microarchitecture level, time 
redundancy can be achieved by instruction re-execution or 
by check pointing and rollback [18]. At the software level it 
can be accomplished by statically duplicating the program 
in multiple versions [12]. It assumes that if one version 
fails, other versions will produce correct results. In this 
paper, we focus on the microarchitecture level of time 
redundancy technique. 

Existing microarchitecture level time redundancy 
mechanisms lose performance due to blindly duplicating 
the execution of instructions at either decode stage 
[25][27][32][34] or at commit stage [22-24][33]. Both 
schemes verify the result at the point when the original 
copy is ready to retire and redundant copy has completed 
execution.  

1. Duplicating the instructions at decode stage generates 
many unnecessary instructions to consume hardware 
resource when branch mis-prediction occurs.  

2. The second scheme stored the committed instructions 
to a buffer in program order. This buffer provides the 
information of retired instructions to the fetch units. 
The instructions would then be re-fetched, re-decoded, 
re-renamed and re-executed.  

The main drawback of the first scheme is that it does 
not cover faults that may occur at the frond-end of the 
pipeline. The second approach is commonly used in 
Simultaneous multithreading (SMT) based fault tolerant 
processors. They have better fault coverage compare to the 



 
 

first approach. However, if they only have limited 
resources, the performance degradation of the second 
scheme is worse than the first. The main reason is that the 
second scheme reduced the instruction bandwidth available 
to the original instruction stream [27]. Since long latency 
operations tend to stay in reorder buffer longer than short 
latency operation, our study reveals that the long latency 
operations are important factor to the performance loss of 
both schemes. Here we categorize memory reference micro-
operation, multiply and divide operations as long latency 
instructions and the rest, including data effective address 
calculation, are short latency operations.         

In this paper we proposed a Ditto Processor to 
combine the advantages of two previous schemes and still 
be able to reduce the performance loss needed for reliable 
computing. It achieves the goal by handling short and long 
latency instructions in slightly different ways. After the 
instructions are decoded, long latency instructions would 
speculatively execute twice and the results are compared 
before instructions committed. All instructions are cloned 
when they are ready to retire. The duplicated instructions 
are held in a buffer and send back to the beginning of the 
pipeline. Since results of long latency instructions are 
checked, the clones of these instructions would not pass 
execution stage again after renaming operation are verified. 
For the clones of short latency operations, once they 
completed the re-execution, results are compared with the 
results of original instructions. If the results of any types 
instructions do not match with their clones, processor 
rollbacks to the point prior to the execution of these 
instructions.  

This approach is unique in several ways: 
1. It does not require SMT support and the operation 

system needs not to be aware of the duplicated 
instructions. 

2. The entire pipeline except the commit stage is covered 
instead of just functional units. Commit stage must be 
duplicated in order to have full coverage. 

3. Detecting the transient fault of short and long latency 
instructions in different ways and having fewer penalty 
cycles for fault recovery help to reduce performance 
loss. Our simulation result shows 1.8~13.3% 
performance degradation.  

This paper attempts to quantify and compare 
performance degradation of various time redundant 
schemes using a microarchitecture simulator when faults 
are present. It assumes transient faults are few and occur 
only as isolated single event. When a fault occurs during 
the simulation, it is always detected. Performance lost due 
to re-execution and accounting is logged. This paper does 
not guarantee schemes used will detect all faults. It is 
organized as follows. In the next section we provide 
background research in this area. In section 3 we discuss 
the details of Ditto Processor operation and additional 
hardware overhead required. In section 4 we describe the 
simulation experimental setup. In section 5 we present 
results of our simulation study together with some 
observations. Finally, we draw some conclusion. 

2. Background and Previous Works 

Present single-chip Commercial-Off-The-Shelf (COTS) 
microprocessors have concentrated the design effort on 
performance. Reliability has not been the primary focus. 
However, some fault tolerant features have been added into 
COTS microprocessors [19][31].  

Hardware redundancy is one possible approach to cover 
logic errors. The Pentium® Pro processor family has built-in 
mechanism to connect two processors into the 
master/checker duplexing configuration for functional 
redundancy checking. It allows duplicated chips to compare 
their outputs and detect errors. However, this technique 
required 100% or more logic overhead. Other hardware 
redundancy approaches adopted involve duplicating 
selected logic within the chip and include error-checking 
logic in all functional elements. IBM’s G5 processor is a 
good example of this approach [19][21]. G5 duplicates its I-
unit and E-unit. It incurs no delay penalty with the 
duplication because it is able to hide the compare-and-
detect cycle completely. Therefore G5 achieves improved 
checking without any performance penalties. However, 
there is a 35% circuit overhead. 

Recently there has been a resurgence of interest in 
utilizing time redundancy at the microarchitecture level to 
recover transient faults. We may classify these related 
works into two categories. The first category utilizes SMT 
mechanism to execute two redundant threads in a processor 
with SMT support. The second type focuses on modifying 
superscalar processor. We group several existing designs 
into these two time-redundant schemes. 

A. Utilizing SMT mechanism in a SMT processor: 

1. Active-stream/Redundant-stream Simultaneous 
Multithreading (AR-SMT) proposed by Rotenberg [22] 
exploits several recent microarchitectural trends to 
protect computation from transient faults and some 
restricted permanent faults. In this approach, a SMT 
processor executes an instruction stream called active 
stream (A-stream) first. Results committed from this 
instruction stream are stored in a delay buffer. A 
second stream (R-stream) of instructions tails behind 
the A-stream with a distance equals to the length of the 
delay buffer. Results from the R-stream execution are 
compared with results stored in a delay buffer and 
committed if they match. Since there are two threads 
being executed, there are two memory images 
maintained. 

2. Recently, the same research group has proposed a new 
paradigm for increasing both performance and fault 
tolerance coverage called “slipstream”. Instead of 
executing two exact instruction streams as in AR-SMT, 
slipstream processors’ A-stream is shortened by the 
removal of ineffectual instructions. This approach [23] 
allows the A-stream to run ahead of the R-stream and 
thus provides not only fault-tolerant coverage but also 
performance improvement.  



 
 

3. Work done by Reinhardt and Mukerjee on the 
Simultaneous and Redundantly Threaded (SRT) 
processor [33] also utilizes redundant thread in a SMT 
processor to detect faults. The SRT dynamically 
schedules the redundant thread to hardware resources 
to have higher performance. Their work introduces the 
abstraction called sphere of replication to identify the 
fault coverage. . 

4. Rashid et. al. proposed fault tolerant mechanism in the 
Multiscalar Architecture [24]. Multiscalar processor 
usually has many processing units to exploit the 
instruction level parallelism (ILP). This technique 
utilizes a minor part of the processing units for re-
executing the committed instructions. Both permanent 
and transient faults in the processor units can be 
detected. 

B. Modified superscalar processor  

1. Work done by Franklin [25] utilizes spare resources in 
a superscalar processor to implement time-redundancy. 
This approach duplicates all instructions at either the 
dispatch or the issue stage. Duplicated instructions 
occupy the otherwise under-utilized functional units to 
produce checking results for verification.  

2. Nickel et. al. [26] extended Franklin’s work and tried 
to improve performance of time-redundant processors 
by adding spare capacity. After an instruction 
completes execution but before it is retired, a 
duplicated copy is placed in a FIFO queue. This 
duplicated instruction is re-scheduled and re-executed. 
In order to minimize the performance loss, this method 
also strategically adds extra functional units to the 
pipeline. 

3. Ray et. al. [32] proposed a similar scheme to what 
Franklin has done. A single instructions stream creates 
multiple redundant threads at decode stage and results 
from duplicated threads are verified at commit stage. 

4. Mendelson et. al. [27] mentioned that if the decoding 
logic is not implemented by table lookup (memory 
structure) one needs to employ some methods to 
protect it from transient errors also. However, their 
approach focused on re-executing the operations twice 
at execution stage and verifying results before 
instruction commit. This scheme has minimum 
hardware requirement to perform error checking and 
has less performance impact due to error detection. 
However, compare to previous studies, this scheme has 
less fault coverage in that it only verified the 
correctness of functional units.  

5. Austin et. al. [34][35][36] introduced the concept of 
using a less complex checker named DIVA to verify 
faults. The DIVA checker can verify not only transient 
faults but also design faults. Moreover, the 
performance impact of this extra checking mechanism 
is less than 3%.  

In summary, we found works on using SMT to detect 
fault have better fault coverage but suffer higher percentage 
performance loss. While works on using existing 
superscalar processor, they do not cover the fault that may 
occur at the frond-end of the pipeline. In this study, our 
goal is to provide a fault tolerant processor which has low 
cost, low performance degradation and high fault coverage. 
We use a microarchitecture simulator to quantify the 
performance loss of several schemes. 

3. Design of Ditto Processor 

Ditto Processor differs from previous approaches in that 
it splits long latency operations and short latency operations 
into different verification path. After the instructions are 
decoded, long latency instructions are identified and 
speculatively executed twice. Results of these long latency 
instructions are compared but they are not committed. All 
non-speculative instructions including those non-
speculative long latency instructions are cloned before 
retirement. These duplicated instructions are held in a 
buffer and send back to the beginning of the pipeline. Since 
the result of long latency instructions are executed twice 
and checked, the clones of these instructions would not pass 
execution stage again after renaming operation are verified. 

For the clones of short latency operations, once they 
completed the re-execution, results are compared with the 
results of original instructions. Any transient fault can 
potentially be discovered when the result of the re-
execution differs from that of the original execution and 
simple recovery scheme is used. If faults occurs at the 
decode stage, results will differ also and be detected.  

Prior to our main study, we observe, in an average, only 
12% of the resources are utilized for integer and floating-
point applications on a baseline 8-issue superscalar 
processor. This means that there are plenty of opportunities 
to take advantage of these unused resources to hide the 
overhead of program re-execution, verification and 
transient fault recovery. However execution in a superscalar 
tends to be busty at times. Without careful organization, 
time-redundancy through cloning still degrades its 
performance. 

In the following sections we will describe in more 
details the design of Ditto processor. After reading through 
the design details, interested reader may find an example of 
pipeline flow for a small piece of sample code in the 
appendix. 

3.1 What hardware is added to support fault-
tolerant mechanism? 

Figure 1 illustrates the basic microarchitecture diagram 
of Ditto processor. It has two additional blocks - a “delay 
buffer” and a “verify logic”. Several existing blocks in a 
superscalar processor also need to be modified. These 
include the re-order buffer (ROB), the commit logic, the 
fetch unit and the decode unit. We describe the changes 
needed for each of these blocks. 
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 Figure 1 Basic Architecture of Ditto Processor

Delay Buffer: Instructions are executed normally the first 
time. Results of committed instructions are queued in the 
delay buffer similar to other schemes [22][23][26]. 
However, each entry not only stores the result but also 
includes the associated instruction code and its instruction 
address. For long latency operations, we also allocate the 
immediate entry that follows to store source operands’ 
values. We called these instructions stored in the delay 
buffer cloned instructions. These cloned instructions are 
removed from the delay buffer when they are scheduled 
and passed the registered read stage.  

Fetch and decode units: Since the gap between processor 
cycle time and memory access time will likely grow 
wider each year, most likely fetch and decode units are 
not the bottleneck. We choose to split the fetch and 
decode units into two equal parts. Half of the fetch and 
decode unit is reserved for cloned instructions stream. In 
order to simplify the maintenance of normal instructions 
and cloned instructions stream, an extra program counter 
is added for the cloned instructions stream. 
Reorder Buffer: We also found that the average reorder 
buffer (ROB) occupancy in the baseline non-fault-tolerant 
system with 128-entries ROB is about 50% for integer 
benchmark and 90% for floating point benchmark. By 
allocating the redundant part of ROB to cloned 
instructions stream, we may reduce the performance 
degradation without extra hardware overhead. After the 
cloned instructions are decoded, they are placed at the 
lower part of ROB (LP-ROB) as illustrated in Figure 1. 
Results of normal instructions are copied from the delay 

buffer to the result field of LP-ROB. Error Correction 
Code (ECC) checking mechanism protects this copy 
operation. In order to differentiate long latency instruction 
and short latency instruction, extra bit is added to each 
ROB entry. We will describe how to handle cloned 
instructions stream renaming in section 3.3. Furthermore, 
the size of LP-ROB should be small enough to minimize 
the effect of normal instructions stream's throughput. Our 
study reveals that long latency operations would have 
severe impact on LP-ROB pressure and degrade the 
performance accordingly. Hence, we suggest that short 
and long latency instructions should go through different 
verification path. 
Status bit to handle duplicate execution: Since all long 
latency instructions are executed twice including those 
that are speculative, we adopt the idea from [27] to handle 
these duplicate computations.  This approach requires the 
fewest hardware overhead. An extra status bit is added to 
each of the ROB entries indicating the long latency 
operation is ready to be executed the second time. Since 
memory reference micro-ops belong to long latency 
operations, this extra status bit is also appended to entries 
of the load store queue (LSQ). Furthermore, the verify bit 
is used to confirm that the computation of duplicated long 
latency operations were completed and verified. After 
these results are confirmed, results from duplicated copies 
are discarded. Since results from the original instruction 
and the duplicate copy may be ready at different cycles, 
we also need to address the scheduling of their dependent 
instructions. We schedule dependent instructions 
according to the data ready time of the original copy, 



 
 

since faults are not as frequent This cause no further 
complication because a mismatch of results will bring 
back execution prior to the faulty instruction. 
Verify logic: Once these cloned instructions complete 
their execution, cloned instructions’ results are compared 
to the original instructions’ results saved in the result field 
of ROB. Verify logic, next to the write-back stage, is used 
to handle this error detection and recovery. We will 
present this mechanism in the following section.  

3.2 Error detection and Fault recovery mechanism 

Ditto Processor employs two checking mechanisms to 
detect potential transient faults. The first mechanism is 
placed after the register-read stage. After a cloned 
instruction's source operands are ready, we compare the 
decoded instruction with the correspond entry in the delay 
buffer.  It detects two places where transient faults may 
occur.  

1. If this re-fetched instruction does not match the 
correspond entry in delay buffer, it indicates the 
occurrences of a transient error in the fetch unit or in 
the decoder. For conditional and unconditional jump 
instructions, the decoded target address is also verified. 

2. For long latency operations if clones source operands 
values does not match the correspond values in the 
delay buffer, it indicates the occurrences of a transient 
error in renaming logic.  

This mechanism allows us to detect faults occurs at 
earlier stages of the pipeline. The verification process is 
overlapped with the execution stage and poses no extra 
delay.  

Figure 2 Instruction renaming example 

The second checking mechanism occurs when the 
cloned instructions complete their computation. Results of 
cloned instructions are compared to the original results 
stored in the result field of ROB entries. If the results are 
the same, cloned instructions are removed from reorder 
buffer. If results do not match, then we have detected a 
transient fault in functional units. Since long latency 
instructions already verified computation results while in 
normal instructions stream, these instructions would not go 
though this second mechanism. 

 In both mechanisms, we recover the system back to the 
known correct state similar to branch mis-prediction 
recovery. Hence, there is no other extra hardware needed 
beside what we have mentioned to handle this error 
recovery on register file rollback. We will present this 
rollback mechanism in the following section. Since, in this 
study, we assume the mean time between faults (MTBF) is 
about 10 million cycles, after several cycles of error 
recovery, the second try1 should have a valid result and 
program may continue to execute. 

3.3 Cloned instruction renaming and register file 
rollback mechanism 

Since the decoder of normal instructions stream and 
cloned instructions stream come from different paths, the 
renamer should not mix these two streams together. Figure 
2 shows a snapshot of the ROB during execution. Ditto 
processor’s ROB is divided into two regions – the normal 
ROB entries region and the LP-ROB entries region. The 
LP-ROB maintains the program order of cloned instructions 
stream while the rest of the ROB is used for normal 
instructions stream. 

We present an example to describe how Ditto Processor 
handles instructions renaming. Let’s assume the LP-ROB 
starts with entry j. Since “multiu” is at the head of LP-ROB, 
all previous cloned instructions have been verified. The 
source operand (r2) of “multiu” is mapped to architecture 
register file, so is the source operand (r4) of “sub” and (r2) 
of "addu". The source operand “r1” of instruction “sub” is 
depending on the previous result of entry j. Since the 
previous result has been copied from delay buffer to entry j 
as described in section 3.1, the source operand (r1) of “sub” 
may use this value and schedule immediately after 
renaming. This is true for instructions “lw” and "addu" also. 
This scenario contains no data hazard and allows cloned 
instructions to fly through pipeline stages faster then normal 
instructions. It also reduces possible performance loss due 
to re-execution come with the time-redundant technique. 

 
For long latency operations, if transient error occurs in 

this renaming operation, the verify logic will detect the 
source operands’ values are different from values produced 
by the original instruction and will signal the recovery 
mechanism. For short latency operations, the verify logic 
would detect this renaming error if the clone's computation 
result is different from the original result since clone 
instruction stream and normal instruction stream handle 
renaming operation independently.  

In a redundant processor using simultaneous 
multithreading technique such as AR-SMT, each thread 
must maintain its own register status and values by register 
map [22], it requires some additional hardware when 
compared with Ditto Processor. In Ditto Processor we only 
need to augment the state bits in architecture register file. 

                                                           
1 The second try means the instructions will be fetch, 
decode and execute twice as mentioned and the result will 
be verify again. 
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Whenever a normal instruction is ready to commit, it writes 
the result to register file and transits the status bits from 
“invalid” to “transient”. Once the cloned instruction is 
verified, the status is changed from “transient” to 
“verified”. This approach requires only one extra bit added 
to each register. From the re-namer and scheduler’s point of 
view, they treat “transient” and “verified” value in the same 
way as data ready. If a transient error is detected, all 
“transient” values are flushed from the architecture register 
file. Moreover, all in-fly instructions are squashed similar to 
miss-branch prediction recovery.  

3.4 What types of operation are protected? 

In the Ditto Processor design, we cover every type of 
instructions for possible transient error. However, we do 
assume that there is no self-modifying instruction in our 
system. 

Short latency Arithmetic/logic instructions: After these 
instructions are ready to retire, they store the result and 
other information to the delay buffer and ROB entry is 
free for other normal instructions. The cloned instruction 
is then fetched, decoded/renamed, scheduled and 
executed. After the result is verified, the LP-ROB is free 
for other cloned instructions. Since we assume the Branch 
Prediction Unit is protected by the ECC mechanism, our 
scheme may verify the correctness of decoded target 
address and the outcome of branch. 
Multiply/Division instructions: Since these instructions 
have long execution latency, they are duplicated after 
decode and speculatively execute twice and result are 
compared and verified. Result of these instructions and 
other information are stored in delay buffer for 
verification later. These instructions are also cloned and 
re-fetched. However, after it is decoded/renamed, 
scheduled and read from register, they would not go 
through computation again. As mentioned before they are 
checked by the first checking mechanism. After passing 
the first checking mechanism, these instructions are free 
from LP-ROB. 

LOAD/STORE type instructions: After this type 
instruction was decoded, it generated two micro-ops: one 
for data address calculation and the other one for memory 
reference. Since memory micro-op belongs to long 
latency operation, it would access cache memory twice 
based on the normal instruction's calculated data address. 
When this type instruction is ready to commit, it would 
store the result and other information into delay buffer. 
After the clone instruction is decoded, it would discard 
the memory micro-op since we only need to verify the 
correctness of data address. 

3.5 What are protected units? 

From Figure 1 we see that processor core is inside the 
shaded area. In other words, we assume any units outside of 
this area are protected by ECC logic. Furthermore, any 

wires and control signals that communicate between 
processor core and other units, such as data cache or ROB, 
are also protected by other fault-tolerant techniques [3-
6][10-11][14].  Whenever a system interrupt or exception 
occurs, protection logic will guard the transient fault to 
make sure these requested are being served correctly. Since 
the correctness of commit logic is imperatively important 
on placing the result into delay buffer and this logic is very 
small, we duplicated the commit logic to enforce its 
correctness.  

4. Simulation Configuration 

We modified the SimpleScalar simulator [28] in order to 
evaluate the performance degradation of different redundant 
schemes when transient faults are present. We randomly 
generate faults with MTTF of 10 millions cycles. When 
each fault occurs, it could occur at any point of the pipeline. 
In our study we randomly assign the fault to a particular 
pipeline stage. 14 SPEC2000 benchmarks (8 integers, 6 
floating points) [29] are used for our simulation study. All 
benchmarks are executed for 500 million committed 
instructions after skipping the first 500 million instructions. 

4.1 Baseline Model 

In our baseline model, we extend the existing 
SimpleScalar pipeline model into seven stages: fetch, 
decode/rename, schedule, register read, execution, 
writeback and commit. Each stage takes one cycle. In order 
to eliminate the effect of data speculation, we schedule the 
dependent instruction at the data ready cycles. For example, 
in a cache-hit case, load operation takes 3 cycles to access 
data (2 cycles to access the tag array to determine hit/miss 
and 1 cycle to access data array). The load dependent 
instructions will be scheduled 2 cycles later after data 
effective address is calculated. Table 1 shows the overall 
baseline system parameters. 

 
Fetch, decode, issue, commit width 8 
Branch Predictor 
Branch Target Buffer 

Gshare, 64-entry, 8 
way, 8k-entry, 8 way 

ROB / LSQ size 128/128 entries 
L1 I/D cache 16KB/16KB 

4-way, 32B line size 
L1 I/D cache hit latency 1/3 cycles 
L2 cache 1MB size 

8-way, 32B line size 
L2 / Memory latency 10/100 cycles 
# of pipelined integer 
ALU/MULT/DIV 

4/1/1 

Integer ALU/MULT/DIV latency 1/3/20 
# of pipelined floating point 
Adder/MULT/DIV 

4/1/1 

Floating point Adder/MULT/DIV 
latency  

2/4/24 

Read/Write port 4 
  

Table 1 Baseline model system parameters 
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4.2 Different Simulation Machine Model 

In this study, we compare five different machine 
models. The baseline model (Base) is described in section 
4.1 In order to compare Ditto Processor with AR-SMT 
[22], we adapt AR-SMT into superscalar model, named 
AR model. There are two differences between AR-SMT 
and AR model. First, R-stream in AR model does not 
perform memory reference micro-ops because this 
operation would require operation system to be aware of 
A-stream and R-stream. Second, AR model does not 
contain trace cache. We further define that 30% of ROB 
entry allocated to R-stream would be AR-30 model (96 
entries for A-stream and 32 entries for R-stream). 
Similarly, R-stream of AR-10 model would utilize 10% of 
ROB entry (Similarly, 112 and 16 entries). 

In our experiment, Ditto Processor model’s (Ditto) 
cloned instructions utilize 10% of ROB (16 entries for 
LP-ROB). Our study reveals that this allocation strategy 
would have the least performance effect on normal 
instructions stream. Both AR and Ditto model use 128-
entry delay buffer to store the committed instructions.  

We also model the 2-way redundant scheme (Dual) by 
Ray et. al. [32]. The Dual model has the same system 
parameters as our Baseline. There are two differences 
between Ray’s original architecture and ours Dual model. 
First of all, the original design has 64KB I-cache, 32KB 
D-cache, 512KB L2 cache and 2 read/write ports while 
our memory subsystem modeling is slighted different and 
summarized in Table 1. Second, ours model has longer 
pipeline stages. Despite these differences, our dual model 
matches their result closely.  

Out-of-order Reliable Superscalar (O3rs) [27] is also 
implemented in this study for comparison. System 
parameters of O3rs are the same as the Baseline model. 
The O3rs model should have the best result in terms of 
Instructions Per Cycle (IPC) degradation, since it only 

verifies the functional units and it does not take away 
ROB entries from normal instructions like other schemes 
for re-computation. 

4.3 Fault Injection Mechanism 

In our study, we inject faults randomly at different 
stages every 10 million cycles for all different schemes 
described above. In other words, the fault could be at 
fetch unit, decoder, scheduler, register read operation, 
execution, bypass logic or others. As instructions with 
faults pass through our checking mechanism they will be 
detected as described in section 3.2. Machine will be reset 
back to the known state. In this study, we assume two 
cycles of error detection and recovery penalty. 

5. Performance result 

In this section, we present the simulation result of our 
study. Section 5.1 shows the IPC degradation of each 
model and section 5.2 shows the functional units resource 
utilizations of each model. Section 5.3 presents the 
characteristic of Ditto Processor. 

5.1 Performance degradation 

Figure 3 illustrates the percent performance 
degradation of several time-redundant fault-tolerant 
designs. AR-10 has slight performance improvement over 
AR-30 in that the former utilizes less LP-ROB. However, 
for one of the floating-point benchmark - “mgrid”, it 
shows a large difference in performance. Further study 
reveals that “mgrid” has over 65% of long latency 
instructions. As LP-ROB size reduces, it leaves more 
space in upper ROB to occupy long latency instructions 
and, in turns, reduce the performance loss. The average 
floating-point benchmark result also shows the same 
behavior that AR-10 outperforms AR-30 by about 7%. 



 
 

Since integer benchmarks have over 70% of short latency 
operations* and these operations enter and leave LP-ROB 
within a very short time, they give AR-10 only slight 
advantage over AR-30.   

In the Dual model, after the instructions are decoded, 
it created another copy of all instructions. A duplicated 
instruction also occupies a ROB entry as described in 
[32]. This mechanism reduces the effective size of ROB 
by half. Therefore, this scheme suffers severe 
performance loss in floating-point benchmarks and “mcf”. 
In these cases, compared to AR-30, Dual model degrades 
the performance by about 9% in floating point 
benchmarks and 3% in “mcf”.. The O3rs model has the 
least performance loss among five models because it does 
not take away ROB entries for duplicated instructions. 
O3rs loses 1.7% and 2% performance for integer and 
floating-point benchmarks respectively. As mentioned 
O3rs does not cover front-end part of the pipeline nor 
memory instructions. Since in our Ditto model the cloned 
long latency instructions do not pass through execution 
stage again and reduce the pressure on LP-ROB, this 
further reduces the performance loss. Ditto suffers about 
1.8~13.3% performance degradation. 

We also observe that “ammp” benchmark has very 
little performance loss, only about 0.4%, on all models. 
Further study reveals that “ammp” has very high L1 and 
L2 data cache local miss ratio, about 50% and 90% 
respectively, most of the operations are hinder by lengthy 
memory reference. In this case all our simulated fault-
tolerant models may be able to benefit from normal 
instructions stream's low throughput and low functional 
units utilization.   

In summary, AR-30, AR-10 and Dual model has an 
average of 10% performance degradation on integer 
benchmarks. Ditto model outperforms these three models 
and reduces the performance loss by 40% to about 6% on 
integer benchmarks. For floating-point benchmarks, the 
performance loss of AR-30, AR-10 and Dual models are 
about 19%, 12% and 28%, respectively. Ditto reduces the 
degradation by 30% and 70% respectively to 8.6% when 
it is compared with AR-10 and Dual models on floating-
point benchmarks.  

5.2 Functional unites resource utilization 

Since different models have different effects on 
functional unit’s resource utilization rate, Figure 4 
presents each model’s utilization ratio in more detail. 
Compared to the Base model, all other models have better 
functional unites utilization, especially Ditto. Since Ditto 
model verifies all types of instructions, it utilizes resource 
more efficiently. On average, Ditto utilizes integer ALU 
units about 15% more than Base model.  

Dual model has the similar ratio as Ditto in integer 
benchmarks, but since it duplicates all instructions 
including instructions that are speculative, the 
performance loss is higher. For floating-points 
benchmarks, there are more long latency instructions 
putting more pressure on the ROB. This further reduces 
the effective instructions windows size. For example, 

Dual model only uses half of the ROB to explore 
instructions level parallelism (ILP). Hence, Dual has the 
worse integer ALU utilization rate for floating-point 
benchmarks. Because both Ditto and Dual models verify 
cache access operations, memory ports are used more 
efficiently on these two models.  

Figure 4 Average functional units resource 
utilization2 

 
O3rs posts no effect on cache ports since O3rs does 

not verify memory reference micro-ops. Since integer 
benchmarks rarely use multiplier and divider, all models 
has very little utilization rate for these modules.  O3rs 
model has slight better MULT/DIV unit utilization for 
floating-point benchmarks in that it has more ROB entry 
to explore ILP than Ditto3. In summary, we observe that, 
when compared to Base model, Dual model has about 5% 
more on functional utilization for integer benchmarks and 
3% more for floating-point benchmarks. O3rs model is 
3.6% and 4.7%, respectively. For Ditto model, it is 5.7% 
and 7.4% better on average. Hence, Ditto model has full 
transient fault coverage with less performance 
degradation. 

5.3 The characteristic of Ditto Processor 

Figure 5 depicts the percentage of IPC degradation 
when we compare the Ditto to the Base model with 
different L1 cache hit latency. We observe that as L1 
cache hit latency increases, the Ditto model gradually 
reduces the performance loss on both integer and floating-
point benchmarks. One factor that affects the percentage 
of performance degradation is the amount of idle time 
available in the processor for time redundancy to perform 
transient fault checking. The basic motivation for our 
approach is to utilizing these stalled processor cycles to 

                                                           
2 There are four groups in this figure and each group contains integer 
and floating-point benchmarks result. The most left group is integer 
ALU unit utilization ratio. The second group is memory port 
utilization ratio and the third group is the combination of integer and 
floating-point multiplier/Divider unit utilization ratio.  The most right 
side group is overall functional unit utilization ratio. 
3 Ditto model has 112 ROB entries for normal instructions stream and 
16 entries for cloned instructions stream. 

0%

10%

20%

30%

40%

50%

60%

int-alu/  
int-bench

memport/
int-bench

mult-div/ 
int-bench

all-fu/    
int-bench

Base
Dual
O3rs
Ditto



 
 

verify computation through re-execution. As memory 
latency increases in terms of cycle time, we have more 
stalled cycles in the processor and more resources 
available. This gives more opportunity to perform cloned 
instructions execution and reduce the effect of 
performance degradation. 

5.0%

5.5%

6.0%

6.5%
7.0%

7.5%
8.0%

8.5%
9.0%

3 4 5

IP
C

 d
eg

ra
da

tio
n

integer
floating-point

Figure 5 Effect of L1 cache hit latency on Ditto 

6. Conclusion 

In this paper we have presented the detail design of a 
fault tolerant superscalar processor called Ditto 
Processor. This processor re-fetches and re-decodes all 
instructions to protect all pipeline stages’ logic from soft 
errors to assure high computation confidence. It requires 
little extra hardware on top of the baseline superscalar. 
We explain the additional microarchitecture resources 
needed and what units we can protect. We also explain 
how to handle the register renaming in Ditto Processor. 
We further identified that long latency operations have 
significant impact on time-redundant fault-tolerant 
superscalar processor. We studied the performance 
degradation of Ditto Processor in comparison with 
baseline superscalar and other published schemes. In 
general, Ditto Processor suffers only 1.8~13.3% of 
performance degradation for all benchmarks. 

As Ditto Processor have only 1~6% more 
performance loss compared to O3RS scheme, our scheme 
have much better fault coverage. The degree of reduction 
varies with amount of contention on the resources brought 
about by duplication. We also observed that as memory 
latency increases, the performance degradation on Ditto 
Processor is reduced. While memory processor 
performance gap continues to grow with technology 
advancement, there will be more stalled cycles available 
for time redundancy. Our study reveals that different 
applications have different characteristics and have 
various requirements on hardware resources. Adopting 
the time-redundant fault-tolerant technique based on this 
knowledge would provide a balance designed fault-
tolerant computing environment with less performance 
loss. 
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APPENDIX: Examples of pipeline flow and fault 
detection 

A. Sample program instructions: 
 Instruction Label in the pipeline diagram 

next_loc:Multiu r1,r2,4 A 
             Sub r1,r1,r4 B 
             Lw r3,16[r1] C 
             Addu r4,r3,r2 D 
             Bne r4,r5, [next_loc] E 
 

B. Pipeline diagram: 
ROB FET Dec SCH REG EXE/MEM WB CMT 

1 A14 A2 A3 A4 A5-7 A8(CHK) A9 
2 B1 B2 B8 B9 B10 B11 B12 
3 C1 C2 C11 C12 C13-16 C17(CHK) C18 
4 D1 D2 D17 D18 D19 D20 D21 
5 E2 E3 E20 E21 E22 E23 E24 
6 A'3 A'4 A'5 A'6 A'7-9 A'10(CHK) A'11 
7 B'3 B'4 B'20 B'21 B'22 B'23 B'24 
8 C'3 C'4 C'23 C'24 C'25-28 C'29(CHK) C'30 
9 D'3 D'4 D'29 D'30 D'31 D'32 D'33 
LP-ROB ~ ~ ~ ~ ~ ~ ~ 
1 $A10 $A11 $A12 $A13 $A14(CHK)     
2 $A'12 $A'13 $A'14 $A'15 $A'16(CHK)     
3 $B13 $B14 $B15 $B16 $B17(CHK) $B18(CHK)   
4 $C19 $C20 $C21 $C22 $C23(CHK) $C24(CHK)   
5 $D22 $D23 $D24 $D25 $D26(CLK) $D27(CLK)   
6 $E25 $E26 $E27 $E28 $E29(CHK) $E30(CHK)   
7 $B'25 $B'26 $B'27 $B'28 $B'29(CHK) $B'30(CHK)   
8 $C'31 $C'32 $C'33 $C'34 $C'35(CHK) $C'36(CHK)   
9 $D'34 $D'35 $D'36 $D'37 $D'38(CHK) $D'39(CHK)   

 
C. Examples of fault detection: 
Case1: A fault occurs at the FET stage of inst. B would be 
detected at $B17. Inst. C, D, E, B’, C’, D’ would be squashed 
from the ROB.  Inst. $B would be squashed from the LP-ROB 
Case 2: A fault occurs at the DEC stage of inst. E would be 
detected at $E29. Inst. E, C’, D' would be squashed from the 
ROB. Inst. $E, $B' would be squashed from the LP-ROB. 
Case 3: A fault occurs at the EXE stage of inst. A' would be 
detected at A'10. Inst. B, C, D, E, A’, B’, C’, D’ would be 
squashed from the ROB. 
Case 4: A fault occurs at the WB stage of inst B would be 
detected at $C23. Error will occur in propagating the result to 
B's dependent instructions. Inst. E, C',D' would be squashed 
from the ROB. Inst. $C, $D would be squashed from the LP-
ROB. 
Case 5: A fault occurs at the REG stage of inst A' would 
be detected at $A'16. Inst. B', C’, D’ would be squashed 
from the ROB. Inst. $A' would be squashed from the LP-
ROB. 
                                                           

4 The number following the instruction label indicates 
the cycle time. An “’” means it is a cloned instruction. 
For example A’3 means instruction A cloned at cycle 
time 3. 


