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Address-Free Memory Access Based on Program
Syntax Correlation of Loads and Stores

Lu Peng, Jih-Kwon Peir, Qianrong Ma, and Konrad Lai

Abstract— An increasing cache latency in next-generation pro-
cessors incurs profound performance impacts in spite of advanced
out-of-order execution techniques. One way to circumvent this
cache latency problem is to predict load values at the onset of
pipeline execution by exploiting either the load value locality or the
address correlation of stores and loads. In this paper, we describe
a new load value speculation mechanism based on the program
syntax correlation of stores and loads. We establish a Symbolic
Cache (SC), which is accessed in early pipeline stages to achieve
a zero-cycle load. Instead of using memory addresses, the SC is
accessed by the encoding bits of base register ID plus the displace-
ment directly from the instruction code. Performance evaluations
using SPEC95 and SPEC2000 integer programs on SimpleScalar
simulation tools show that the SC achieves higher prediction ac-
curacy in comparison with other load value speculation methods,
especially when hardware resources are limited.

I. INTRODUCTION

Today’s high-performance processor pipeline permits over-
lapping instruction execution to achieve more than one Instruc-
tion Per Cycle (IPC) average execution rate. The available
Instruction-Level Parallelism (ILP) constrains this parallel ex-
ecution because dependent instructions must wait for the data
produced by the source instructions. The severity, in terms of
execution delays, depends primarily on the speed that the pro-
ducer instruction can generate the needed data.

Memory load latency presents a classical pipeline bottleneck
even when the data is located in the first-level cache (

���
). Usu-

ally, the load data from
���

is not ready until late stages of
the pipeline while the dependent instruction requires the data
at an earlier stage. This load-to-use delay exacerbates in re-
cent high-performance microprocessors in which multi-cycle,
first-level caches become the norm [21], [24], [23], [14], [12].
As the cache size, clock frequency, and complexity of microar-
chitecture continue to increase in next-generation processors, it
is estimated that the

� �
cache accesses may consume two to

five cycles [2]. This increasing load latency from caches will
further lengthen the load-to-use delay and will have profound
performance impacts in spite of advanced out-of-order execu-
tion techniques [2], [3], [18]. Simulations using SPEC2000
integer benchmarks running on the out-of-order SimpleScalar
model [4] have shown that each cycle reduction of the

���
ac-

cess delay improves the IPC by 5–10% [18].
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In Figure 1, a conceptual out-of-order execution pipeline is
partitioned into two phases. First, an instruction is fetched, de-
coded, renamed, and issued through the front-end of pipeline
stages. Afterwards, the register operands are read and the in-
struction is executed (including memory access) and commit-
ted through the back-end of pipeline stages. In order to be stall-
free, a source instruction must produce the data before its de-
pendent executions. In other words, a critical producer, when
it is fetched and issued at the same cycle as its dependent in-
structions, needs to generate the result in the front-end of the
pipeline to avoid any stall of its dependents. Such a dependent
stall-free memory load instruction is called a zero-cycle load.

Fig. 1. Processor pipeline and dependent stall-free point

There have been several attempts to achieve a zero-cycle load
by predicting and speculating the load value [15], [16], [26],
[22], [25], [11], [5] or the load address [9], [10], [6], [2] in the
front-end of the processor pipeline. Both load value and load
address predictions generally suffer a low prediction accuracy.
For address predictions, a lengthy cache access is still required
that may delay the load dependents even if the predicted load
address is correct.

In this paper, we exploit a new avenue to speculatively obtain
the load value in front-end stages of the pipeline. First, we ob-
serve that store-load and load-load correlations are established
in software and often displayed in the program syntax in the
form of a base register ID plus a displacement value. There-
fore, it is reasonable to use part of the store/load encoding bits
(base register ID + displacement) directly to capture such cor-
relations. Second, applications exhibit spatial locality among
memory references. Such locality can also be observed in the
program syntax when nearby loads or stores differ only by a
small displacement value. Therefore, it is beneficial to establish
store/load dependences on a large block granularity to capture
the spatial data reference locality.

The syntax correlation holds when the content of the base
register remains unchanged. This property exists in various pro-
gram constructs such as accessing global and local variables,
saving/restoring registers during procedure/function calls, ref-
erencing different records using the same pointer in linked
data structures, accessing array elements in loop iterations
with/without loop unrolling, etc. We also observe that the base
address may stay the same even when the base register is up-
dated between two memory references. This is due to a lack
of sufficient registers, an uncertainty of future execution paths,
or a traversal through different procedures that requires a base
register to be saved and restored before the next usage.
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Based on these observations, we propose a Symbolic Cache
(SC). An SC is a small separate data cache that is accessed at
early front-end stages using certain encoding bits directly from
memory instructions. The speculative data retrieved from the
SC can trigger the execution of dependent instructions to avoid
any delays. Performance evaluations using SimpleScalar tools
and SPEC95/SPEC2000 integer programs show that the aver-
age prediction accuracy reaches over 70% using small SCs.
This accuracy is generally higher than other data speculation
methods, especially when hardware resources are limited for
constructing extra caches and tables. The remaining paper is
organized as follows. A few related work on hiding cache la-
tency will be given in the next section. The motivations and im-
portant observations for the proposed method will be described
in Section 3. This is followed by discussions of design and re-
lated issues for establishing the SC in Section 4. In Section 5,
performance evaluations of three data speculation methods are
given. Several design parameters for the SC are also evaluated.
Finally, Section 6 concludes the paper.

II. RELATED WORK

The most aggressive load value speculation is to predict the
value at the onset of pipeline execution. A load-value history ta-
ble is established and accessed using the Program Counter (PC)
of the load. This scheme allows loads bypassing caches com-
pletely to achieve a zero-cycle load. A value prediction can be
successful if the value is repeated from the previous execution
of the load [15], [16], [26], or the load value is followed certain
recurrence patterns [22]. However, the lack of a close correla-
tion between the instruction address and the value of the load
makes it difficult to achieve a high prediction accuracy [15],
[16], [26], [22], [11], [5].

Another way to circumvent pipeline hazards caused by the
cache latency is to predict the load address at the onset of
pipeline execution so that a cache access can start speculatively
without going through the normal decode, rename, and address
generation stages [9], [10], [6], [2]. Existing address prediction
methods exploit regular patterns such as stride-based address
patterns, and irregular but repeated patterns such as addresses
for traversing link-based data structure. However, the difficulty
remains of predicting a significant portion (over 30% [2]) of
load addresses that do not fall into these two categories. In
a recent proposal, dynamic dependence links were established
between the instruction which updates a register to the instruc-
tion where the register is used as the base register [8]. Once
the updated value is available, the dependent load address can
be calculated early and more accurately. However, the lengthy
cache access is required still, even with a correct address.

Memory renaming techniques establish dynamic dependence
correlations between stores and loads [25]. A separate storage
element called a value file (VF) is used to save the correlated
data. When a memory load instruction is fetched, an indirect
access to the value file based on the PC of the load can re-
trieve the data without going through a lengthy cache access.
Studies show that there are many more loads that consume the
value from the same producer than those loads which repeat the
same value or address from the previous instance of the same
load. Therefore, there is a better chance to obtain the correct

load value by using memory renaming through the VF rather
than based on the load value/address locality. This approach,
however, requires additional hardware to establish the correct
dependence links among stores and loads. The load value can-
not be accurately predicted before such a correlation has estab-
lished dynamically. A similar idea has been exploited to dy-
namically establish store-load [19] and load-load [20] associa-
tions. A small synonym file which keeps the correlated data can
be indirected accessed by the PC of the load.

Recently, another early load address resolution technique for
deep-pipelined machines has been proposed [3]. The authors
observed that the addresses for certain types of memory loads,
such as stack access, constant, or stride-based memory access,
have regular increment/decrement patterns. By tracking the
registers used for this type of load, register updates can be com-
puted at the decode stage. As a consequence, the dependent
load can start the address generation and cache access earlier
after the load is decoded. Although non-speculative, this ap-
proach is limited to memory loads with certain address patterns.
Also, the lengthy cache access is still required.

There have been other attempts to achieve fast cache ac-
cesses. The real cache index bit prediction based on the base
register content enables parallel address translation and cache
access [13]. Due to small offset values, the zero-cycle load
technique [1] uses a simple carry-free adder for fast approxi-
mation of the load address. To avoid speculative address cal-
culations, a special compiler-directed register is added in [7] to
save the content of the base register for the next load so that the
load address can be calculated in the decode stage. The SAM
cache [17] uses the base address and the offset separately to ac-
cess the cache directly. Although all these techniques achieve
fast cache access, their impact in hiding the long cache latency
on deep-pipelined microarchitectures is rather limited.

The proposed Symbolic Cache (SC) has several advantages
over existing cache latency hiding methods. First, the SC can
handle any type of loads, address patterns, or special usages of
base registers. Second, unlike address predictions or register
tracking, loads through the SC can bypass the address genera-
tion and cache access completely to achieve a zero-cycle load.
This is similar to the value prediction method. However, in-
stead of being based upon the history of the load values, the
SC captures store/load syntax correlations with higher accu-
racy. Third, unlike the memory renaming technique, where the
store/load correlation is established dynamically by the hard-
ware, the store/load correlation is directly obtained from the
instruction encoding bits to simplify the hardware requirement.
In addition, the SC can capture spatial locality among memory
references.

III. SYNTAX CORRELATION OF MEMORY REFERENCES

The foundation of the Symbolic Cache (SC) is based on store-
load and load-load correlations from the program syntax in the
form of a base register ID and a displacement value. This sim-
ple memory reference syntax also exhibits spatial locality. In
this section, we will provide two programming examples and
describe qualitatively the existence of such syntax correlations
and reference locality in real programs. In Figure 2, the source
and the assembly codes of a simple function copy disjunct from
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Parser of SPEC2000 are given. This function is invoked many
times to build a new copy of a disjunct list. The second exam-
ple bsW is extracted from Bzip of SPEC2000 (Figure 3). This
function is also invoked multiple times to perform bit-stream
I/Os.

Fig. 2. Example I: source and assembly codes of function copy disjunct from
Parser

The store/load syntax correlation and reference locality can
be observed in several program constructs.

Register Save and Restore in Procedures and Functions: As
shown in Figure 2, store/load dependences can be established
perfectly with a matching pair of the base register ($sp) and
displacement for saving and restoring register contents when
the function copy disjunct is invoked. Although the invocations
of xalloc and copy connectors may change the value of the $sp,
the original value in the copy disjunct is restored after returning
from the function calls.

Access Records in Linked Data Structures: In the same ex-
ample, the pointers (d, d1) are used to copy and construct a
new node in the target linked structure. Different records (also
pointers in this case) in each node of the old and the new linked
structures are accessed using pointers d, d1. In the assembly
code, the two pointers are loaded in registers $s0, $s1 and are
used as the base registers to access these records with small
variations of the displacement value. The syntax correlations
and reference locality among these accesses are clearly demon-
strated in the assembly code.

Access Array Variables: Similar store/load correlations are
also observed in accessing array data structures in several stud-
ied workload. For example, intensive array accesses are ob-
served in several functions in Gcc of SPEC2000. Nearby ref-
erences to different elements of the same array with the same
base address provide syntax correlated stores and loads.

Access Global Variables: As shown in Figure 3, three global
variables, bsBuff, bsLive and bytesOut are accessed when the
function bsW is invoked. Due to the limited registers, these
variables are loaded/stored multiple times based on the same
global pointer $gp. The access of global variables exhibits both
the syntax correlation and the spatial locality.

Fig. 3. Example II: function bsW from Bzip, (a) source code; (b) assembly
code; (c) partial assembly code from caller SendMTFValues

Access Local Variables: In the bsW, the callee-saved regis-
ters $s0 and $s1 are freed up for local usages to avoid saving
parameters of n and v from registers $a0 and $a1 to the local
stack and retrieving them later for computations. However, in
functions that involve more complex computations and/or more
temporary local variables, it is inevitable to increase the lo-
cal stack accesses using the stack pointer $sp and/or the frame
pointer $s8 that also display strong syntax correlations and spa-
tial locality.

Save/Restore Base Registers: There are evidences that the
syntax correlation is still hold even if the base register has been
updated between two memory accesses. This is due mainly to
the fact that a base register may be freed up for other usages and

the original base address is restored before the next memory ref-
erence. In Figure 3, we also show a partial assembly code from
a caller SendMTFValues of the bsW. In this caller, $s1 is used
as a base register before calling the bsW. After returning from
the bsW, $s1 continues to be used as a base register. Although
$s1 has been updated in the bsW, the original base address is
restored to keep the syntax correlation alive.

IV. ESTABLISHING A SYMBOLIC CACHE

An SC is a small data cache which is addressed by the encod-
ing content of load/store instructions. The SC can be accessed
once loads/stores are fetched out of the instruction cache. As
a result, pipeline stages involving register file access, address
generation/translation, and cache access can be bypassed. The
impact of pipeline performance using an SC is very similar
to that of using the VF in memory renaming techniques [25],
where the speculative load data is fetched out of the VF indi-
rectly through a store/load correlation table. In this paper, we
focus on the accuracy of load data speculation using the SC. We
omit discussions of integrating the SC into a pipeline microar-
chitecture.

It is essential to properly extract the symbolic address
from the encoding bits of load/store instructions to capture
the syntax correlations. A typical memory instruction con-
sists of an opcode, a register source/destination, and a mem-
ory source/destination. Intuitively, we can use the memory
source/destination to form a 32-bit symbolic address as illus-
trated in Figure 4. The least significant 16 bits are extracted
from the displacement value, and the base register ID (5 bits)
are inserted next to the displacement. Although simple, this
approach suffers aliasing problems because multiple memory
addresses can be mapped to the same symbolic address. In ad-
dition, this simple symbolic address formation creates other ac-
cess and alignment problems.

Fig. 4. Extracting symbolic address from memory instructions

� Aliasing of Symbolic Address: With the simple address
mapping in Figure 4, a 32-bit memory address is repre-
sented by a 21-bit symbolic address. Therefore, multiple
memory addresses can be expressed by the same symbolic
address. An obvious example can be found in stack ac-
cesses for local variables and for saving and restoring reg-
isters during procedure/function calls. Although access-
ing a different stack frame in each procedure invocation,
the same stack pointer ($sp) and frame pointer ($s8) with
a small range of displacement values are commonly used.
The contents in the SC for local variables and saved reg-
isters are likely overwritten in the callee procedures and
cannot be reused after returning from the procedures.� Uneven SC Index Distribution: It is well-known that dis-
placement values in memory references are unevenly dis-
tributed with a high percentage of ‘0’ and a few other con-
stants. Using a portion of the high-order displacement bits
as the index to the SC may potentially generate heavy con-
flict misses.� Word/Byte Alignment: The most difficult problem lies in
the difference of the line boundary between a symbolic
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and a
���

cache lines. This alignment problem is due to the
fact that offset bits of a cache line are not always the same
between the symbolic and the real addresses. It is essen-
tial to properly align the data layout in the symbolic cache
according to the symbolic address to capture the spatial
locality of memory references.

A. Procedure Coloring and Index Randomization
In order to alleviate the stack access aliasing problem in dif-

ferent procedures, various procedure coloring techniques can
be constructed. A straight-forward technique is to maintain
a global counter called P-color. The P-color is incremented
whenever a procedure call is encountered. It is decremented
after returning from a procedure. The P-color can be incre-
mented contiguously in nested or recursive procedures before
being decremented. Stack accesses between a caller and its
callees can be differentiated by the P-color to avoid conflicts
in the SC.

The P-color can be concatenated with the symbolic address
for stack accesses. The width of the P-color counter is flexible.
Figure 5 (a) illustrates the symbolic address after adding a 6-bit
P-color. It is important to know that the P-color is only applied
to stack accesses which use $sp and $s8 as the base register.
Other memory accesses do not add the P-color to allow sharing
of global variables among different procedures or functions.

Fig. 5. (a) Adding procedure color to symbolic address; (b) Index randomiza-
tion in accessing the SC

An uneven distribution of the index bits extracted directly
from the displacement value has a potential to create heavy con-
flict misses in the SC. This problem comes from the fact that
high-order displacement bits are often all zeros and can be dealt
with by a simple randomization technique. Instead of extract-
ing index bits from the symbolic address directly, randomized
index bits can be formed by exclusive-ORing the original index
bits from the displacement with the bits from the base register
ID and the P-color as illustrated in Figure 5 (b). In this exam-
ple, it is assumed that the SC has 64 sets with 64-byte line size.
The six index bits are obtained by exclusive-ORing normal in-
dex bits in position 6 to 11 with the base register ID and partial
P-color bits starting at position 16 through 21.

B. Word/Byte Alignment
One remaining issue is the data alignment between the SC

and the
���

data cache. The symbolic address within a cache
line, i.e. the last few offset bits, may not be the same as the off-
set bits in the real address. In order to exploit spatial reference
locality, the cache line fetched from

���
needs to be rearranged

in the SC such that the data layout can be aligned with the sym-
bolic address. The basic alignment algorithm works as follows.
When a memory request misses the SC, the target cache line
is fetched from the memory hierarchy and loaded into the SC.
The target byte/word is placed in the SC according to offset bits
of the symbolic address. For example, assume there are eight
access units in a cache line as shown in Figure 6. The symbolic
offset of the target unit is 010 while the offset of the real ad-
dress is 101. In this case, the target data 101 is loaded into unit

010 in the SC. The remaining units are loaded according to the
location of the target unit. There are thus two important aspects
to consider for a proper data alignment:

Fig. 6. Data alignment in symbolic cache

� Granularity of Data Alignment: Depending on memory
access granularity, it is conceivable that the data alignment
can be performed at byte, half-word, word, or double-
word level. The byte-level alignment can accommodate
accesses by other granularity with the expense of main-
taining more valid bits for the alignment information.� Handling Underflow/Overflow Data: Since the line
boundaries of the SC and the

���
caches may be differ-

ent, only a partial line can be filled on each SC miss. In
addition, there is excessive data from the target

� �
cache

line that cannot fit into the requested line location in the
SC. The simplest and most natural solution is to only fill
a partial SC line and drop the unfitted data. Other options
include fetching two adjacent

� �
lines for each requested

SC line, and/or to search and place the overflow
� �

data
into the correct second SC line.

Performance evaluation on these design options will be given
in the next section. It is important to keep the SC design simple
since the primary goal of establishing the SC is to provide a
zero-cycle load.

V. PERFORMANCE EVALUATION

Performance evaluations of three load value speculation
methods are given including the last-value and stride-based
value prediction (VP), the memory renaming (MR), and the
proposed symbolic cache (SC). Our primary focus is to com-
pare the prediction accuracy among these three mechanisms.
All simulations are carried out on the Sim-Save model of Sim-
pleScalar. Twelve integer programs, Go, Li, M88k, Perl from
SPEC95 and Bzip, Gcc, Gzip, Mcf, Parser, Twolf, Vortex, Vpr
from SPEC2000 are used. Version 2.7.2.3 ssbig-na-sstrix-gcc
compiler with options: (-funroll-loops -O2) is used to generate
the binary code. For each workload, we skip the first 900 mil-
lion instructions, use the next 100 million instructions to warm
up the caches and tables, then collect simulation statistics from
the next 500 million instructions.

A. Data Alignment

We first investigate and evaluate different alignment granu-
larity. Table I shows matches of the least-significant two bits be-
tween the symbolic and the real addresses with different mem-
ory access granularity in the simulated programs. On the aver-
age, 87.4%, 3.2% and 9.4% of memory references are accessing
word, half-word, and byte respectively. Mismatches of the two
bits for the three access granularities are about 0%, 0.5% and
4.5%. The word access is always aligned at the word boundary
for both the real and the symbolic addresses. On the other hand,
the word alignment creates 5% of mismatches for half-word and
byte accesses. Since the word alignment reduces extra valid bits
significantly, we will simulate both byte and word alignments
and show their impact on the SC accuracy.
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TABLE I
MATCHING OF THE TWO LEAST-SIGNIFICANT ADDRESS BITS BETWEEN

REAL AND SYMBOLIC ADDRESSES FOR ACCESSING WORD, HALF-WORD

AND BYTE

With regards to the line-fill on SC misses, preliminary stud-
ies show that the option of filling the entire SC line by fetching
potentially more than one

� �
cache lines provides very lim-

ited benefit. Moreover, to place the entire target
� �

line into
the SC on each miss does not benefit the accuracy much either.
Therefore, only the simple partial SC line-fill by dropping any
unfitted data is considered in subsequent evaluations.

B. Sensitivity of P-color and Index Randomization

Table II shows the accuracy of load value speculation using
a 4KB SC with the word-alignment and 0, 2, 4 P-color bits.
In general, we observe an average improvement from 68.8% to
70.4% by adding a 2-bit P-color. A few benchmark programs
show no improvement at all with the simple P-color mecha-
nism. After examining dynamic function calls in these pro-
grams, we found that there are very few nested calls and the
program execution tends not to frequently traverse back and
forth among multiple procedure levels. For instance, in Gzip,
about 98% of the calls are labeled at level 6. We also observe
that there is no benefit in increasing the number of bits in the
P-color. With more P-colors, more levels of procedure invo-
cation can be differentiated. However, analysis of application
programs reveals that perfectly-nested or deeply-recursive pro-
cedures that benefit with more P-colors rarely exist. The actual
execution path normally traverses among a few levels of proce-
dures. Also, due to a small SC, the data from ancient ancestors
is difficult to hold anyway.

TABLE II
LOAD ACCURACY USING THE SC WITH/WITHOUT THE P-COLOR

The benefit of index randomization is more evident in Ta-
ble III, in which the accuracies of three 4KB SC configura-
tions are displayed. By randomizing the index, a 4-way set-
associative SC can achieve the accuracy approaching to that of
a fully-associative SC. On the other hand, without this process,
it degrades the accuracy of the 4-way design from 70.4% to
64.9%.

TABLE III
LOAD ACCURACY USING THE SC WITH INDEX RANDOMIZATION

These results suggest that the effective working set between
base register updates is very small. Once the content of a base
register changes, the old data in SC based on the same base reg-
ister becomes stale. Because the original index bits are likely
to be all zeros (Figure 5), stores and loads using the same base
register may locate in very few sets even with index random-
izations. Given the fact that the randomized 4-way SC achieves
an accuracy comparable to that of a fully-associative SC, the

4 lines in each set are enough to hold the working set for each
base register ID. Although higher set associativities increase the
capacity in each set to hold more lines for each base register,
frequent updates of base registers wipe out the corresponding
correlated data in the SC.

C. Comparison of Three Data Speculation Methods

The accuracies of three load value speculation mechanisms
are evaluated. Both byte and word alignments for placing a line
in the SC are considered. Also, index randomizations and a 2-
bit P-color are applied to improve the load accuracy. For a fair
comparison, we simulate the three methods using comparable
hardware with respect to the extra storage requirement to build
additional tables and caches.

The VP scheme establishes a value history table to remem-
ber the recent value of each load. For matching the PC of
a load, proper tags are maintained in the value history table.
In addition, an increment value is needed in each entry to ac-
commodate a stride-based predictor. The MR scheme uses a
Value File (VF) to keep store/load correlated values for later ac-
cesses. In addition, two extra tables are needed. The Store/Load
Cache (SLC) saves pointers to the VF. The SLC is addressed by
the PCs of loads and stores with tags for matching the correct
PC for indirect accesses to the VF. The Store-Address Cache
(SAC) also records pointers to the VF. The SAC is accessed
by load/store addresses for establishing load/store correlations.
Again, address tags are necessary to make a correct correlation.
The SC is simply a data cache addressed by the symbolic ad-
dress. There is no extra hardware except for a small tag array
in which each tag along with a few valid bits is associated with
a 64-byte symbolic cache line.

We consider six configurations for accuracy comparisons as
shown in Table IV. The hardware requirement is represented by
the total number of entries in the respective tables and caches.
Because of the additional tag arrays, the storage requirement
for the VP and the MR are actually about 40-50% and 10-15%
more than that of the SC in each configuration. Note that in this
first-cut estimation, extra control logic is not considered.

TABLE IV
SIX CONFIGURATIONS FOR ACCURACY COMPARISONS

Figure 7 plots the average accuracy curves based on the
twelve integer programs for the three data speculation methods.
Generally speaking, the SC has the highest accuracy, especially
with small configurations. For example, more than 70% of the
loads can obtained correct values from a small 4KB SC. These
results demonstrate the existence of store/load syntax correla-
tions and spatial locality that can be captured effectively by
small SCs. The MR scheme, on the other hand, requires 8
times of the hardware storage to reach about 67% accuracy. The
MR scheme performs poorly with small configurations primar-
ily because of misses to the small SLC/SAC for establishing
correct store/load correlations. In addition, the correlation must
be established before a correct value can be obtained. The MR
scheme shows more improvement when the configuration size
increases. With bigger SLC/SAC, data dependence links can be
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Fig. 7. Average accuracies of three data speculation methods

built more precisely than those approximated by the symbolic
address. However, the SC still maintains an edge by capturing
the spatial locality. The last/stride value predictor generally has
the worst accuracy. The accuracy improvement is leveling off
with larger value history tables. This confirms a poor correla-
tion between the load value and its instruction address.

The byte alignment does not improve the accuracy much. For
a 4KB SC, for instance, the byte alignment improves the aver-
age accuracy of the word alignment from 70.4% to 71.1%. As
shown in Table I, there is very little or no difference between
byte or word alignment for a majority of the programs. The
two programs that benefit the byte alignment the most are Bzip
and Gzip because of their high percentage of sub-word accesses
and mismatches of the least-significant 2 bits between real and
symbolic addresses.

The SC size plays a minor role in providing accurate load val-
ues. Again, this is due to the fact that the working set between
base register updates is very small. Since the randomized SC
index is still mapped to very few sets for each base register, in-
creasing the SC size (i.e. the number of sets) does not improve
the capacity for loads using a specific base register.

Now considering the third configuration with a 4KB SC, the
average prediction accuracies are 55.0%, 56.6%, 70.4% and
71.1% for the VP, the MR, and the SC with word alignment
(SC-word) and the SC with byte alignment (SC-byte) respec-
tively as shown in Figure 8. Among the twelve integer pro-
grams, M88k, Perl, and Gcc show very good syntax correla-
tions with over 80% of prediction accuracies, while Li, Gzip,
Twolf, Vortex, and Vpr show reasonable accuracies over 70%.
Go, Bzip, Mcf and Parser, on the other hand, have poor accu-
racy, especially for Go with an accuracy only about 47%. Re-
call that in order to hold the syntax correlation, the base register
content must remain unchanged between two correlative mem-
ory instructions. We found out in Go, about 64% of the loads
are executed using a newly updated base register. On the other
hand, only 22% and 24% respectively for the loads in Gcc and
M88k are executed right after their base registers have updated.
More detailed analysis with respect to the base register updates
will be given in the next Section V-D.

The SC scheme does not perform well against the other two
schemes under Bzip and Parser. In Bzip, a main function full-
GtU that finds matches of character strings, has shown good
value locality and good dynamic store/load correlations estab-
lished by the MR scheme. However, the SC handles this func-
tion poorly because the base addresses of the matching strings
are calculated right before loading characters from the two
strings. A similar behavior has also found in Parser.

Fig. 8. Accuracy of three data speculation methods for individual programs
(based on configuration 3)

In Figure 9, we break down correct and incorrect load value
speculations using the SC with respect to the base register IDs.
We separate base registers into 5 groups: $v, $a, $s+$t, $gp
and $sp+$s8, each represents 20.5%, 26.4%, 11.3%, 18.2% and
22.5% of the total loads, respectively. (Note there is about 1%

of the loads using other registers.) The accuracies of the 5 base
register groups are 29%, 73%, 63%, 98%, and 94%. As ex-
pected, it is highly accurate to access global variables and local
stack frames. For other loads, the compiler first picks $v and
$a as temporary registers to hold base addresses for memory
accesses. The base address is often computed or loaded from
memory for an indirect access right before the load that results
in an incorrect values from the SC. The $a registers, which
show higher accuracy, are also used for passing parameters to
callee functions. We observe that many functions have mem-
ory addresses (pointers) as parameters that are passing through
the $a registers. In each callee function, the $a registers are fre-
quently used as a base without any modification. We also found
in Gcc that certain memory addresses are passing through sev-
eral function levels using the $a registers. Thus, memory loads
based on $a can potentially keep the correlations alive through
several function levels.

Fig. 9. Correct / incorrect load value speculations with respect to different
base register groups

D. Accuracy Regarding Base Register Update
The syntax correlation holds when the content of the base

register remains unchanged from the last memory reference
with the same symbolic address. Figure 10 shows the average
accuracy of all the loads with respect to the distance to the last
update of the base register. For example, the distance is equal to
1 for a load when the base register of the load is used for the first
time as a base register after an update to the register. Similarly,
the distance is equal to 2 if a register is used for the second time
as a base register for either load or store after the content of the
register has updated. The distances of 20 or longer are repre-
sented by a single data point. In general, the accuracy goes up
with the distance due to the locality of references. A cold miss
is encountered when the distance is equal to 1 unless the latest
update did not change the content of the base register from the
previous use of the same base register.

Fig. 10. Load accuracy and distribution with respect to the distance to the last
base register update

A few observations can be made from the figure. First, when
the distance is 3 or longer, the speculative load data from the
SC is very accurate with an average accuracy about 98%. This
indicates a very strong reference locality based on the symbolic
addresses of nearby stores and loads.

Second, instead of all cold misses, the average accuracy is
36% when the distance is equal to 1. This accuracy comes
from restoring base register content before the load. Unfor-
tunately, a significant portion (39%) of the loads use a base
register at the first time after its updates. With only 36% of
accuracy, these loads produce 25% inaccurate data with respect
to the total loads. Therefore, the distance-1 loads are the major
factor for the overall accuracy. For example, in the two high-
accuracy programs, Gcc and M88k, only 22% and 24% of loads
are distance-1 with an accuracy of 46% and 68%, respectively.
On the other hand, Go has 64% of loads are distance-1 with a
poor accuracy of 18%.
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Third, about 24% of the loads have distances of 20 or longer.
This long distance comes mainly from access global variables,
also from some local variable accesses. An average accuracy of
98.4% is obtained for these long-distance loads.

Compiler optimization techniques may be applied to im-
prove the syntax correlations of stores/loads. For example,
we observe that parameters are sometimes passed to the callee
through the caller’s stack frame. Accessing the parameters be-
fore an update of the frame pointer may keep the correlation
alive. Further discussions in this direction is out of the scope of
this paper.

VI. CONCLUSION

A new load data speculation method, based on instruction
syntax correlations of stores and loads, has been introduced
in this paper. Instead of establishing the store/load correla-
tion dynamically at runtime, the proposed method establishes
a small symbolic cache to capture existing syntax correlations
and memory reference locality. The symbolic cache is ad-
dressed by the encoding content of store/load instructions to en-
able data accesses in the front-end of the processor pipeline to
shorten load-to-use latency. Performance evaluation of SPEC
integer programs has demonstrated that the proposed method
can achieve an accuracy over 70% with a small 4KB symbolic
cache. With compiler helps to reduce base register updates and
to better utilize displacement values, further improvement of
the SC accuracy may still be possible.
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